CITY OF LOMITA

Cypress Water Production Facility Monthly Status Report

FEBRUARY 2016

TABLE OF CONTENTS

COVER LETTER	. 1
A. BACKGROUND	2
B. WELL PRODUCTION AND OPERATIONS	2
C. OPERATIONAL INTERRUPTIONS	2
D. SAMPLE LOCATIONS	2
E. WATER QUALITY MONITORING	. 3
E1. IRON, MANGANESE AND COLOR	. 3
E2. FREE AND TOTALCHLORINE RESIDUALS	. 3
E3. TOTAL DISSOLVED SOLIDS (TDS), ODOR, HARDNESS AND METHANE	.3
E3-1 TOTAL DISSOLVED SOLIDS (TDS)	. 3
E3-2 HARDNESS	3
E3-3 DISSOLVED MATHANE (IN WATER)	. 4
E3-4 METHANE (IN AIR)	.4
E4. NITRIFICATION MONITORING	. 4
F. TABLES	5

CITY COUNCIL

JIM GAZELEY MARK WARONEK HENRY SANCHEZ, JR MICHAEL G. SAVIDAN BEN TRAINA

ADMINISTRATION

RYAN SMOOT
CITY MANAGER

CITY OF LOMITA

March 10, 2016

Mr. Paul Williams, P.E.
District Engineer – Hollywood District
State Water Resources Control Board – Division of Drinking Water
500 North Central Avenue, Suite 500
Glendale, CA 91203

<u>Subject: System No. 1910073 - Monthly Report for the Cypress Water Production Facility (CWPF) for the period of February 1 through February 29, 2016.</u>

Dear Mr. Williams,

In accordance with the Department of Public Health temporary approval letter dated March 15, 2013 and Permit Amendment No. 1910073, I am submitting the following report for the Cypress Water Production Facility operations for the month of February 2016.

If you should have any questions or concerns, please contact me at 310-325-7110 x124.

Sincerely,

Mark A. McAvoy, P.E.

Public Works Director/City Engineer

A. BACKGROUND

On March 15, 2013, the City of Lomita received conditional approval from the Department of Public Health (DPH) to distribute blended water from the Cypress Water Production Facility (CWPF) Well No. 5 to the City's customers.

The CWPF is an iron-manganese greensand filtration treatment system designed to remove primarily iron, manganese, and color. The CWPF was recently modified to enable aeration and blending with Metropolitan Water District (MWD) imported water to address the aesthetic secondary issues of Total Dissolved Solids (TDS), Hardness (as Calcium Carbonate), and Taste/Odor.

The CWPF came online on April 1, 2013. The first week of operations from April 1 to April 5, 2013 was utilized for conducting routine startup activities. The distribution of blended water to the City's residents began on April 5, 2013.

B. WELL PRODUCTION AND OPERATIONS

For the month of February 2016, the CWPF operated on a fill and draw cycle providing blended water with the reservoir level fluctuating with system demand. The Cypress Reservoir operated as follows: filled for 12 days and drew for 17 days.

The total production from Well No. 5 for the month was approximately 72.11 ac-ft (23,494,261 gallons) with a daily production of approximately 6.01 ac-ft. The total combined production from both MWD import water and Well No. 5 was approximately 118.12 ac-ft (38,487,252 gallons) for the month with a combined daily production of approximately 9.84 ac-ft.

The daily average flow from Well No. 5 was 1,080 gpm. The average flow from the Well was determined by taking an average of the daily reads provided on the Daily Monitoring logs used onsite. The blend ratio for this month was on average 60% Well water and 40% MWD water.

C. OPERATIONAL INTERRUPTIONS

The Cypress Reservoir continued to supply Zone I with free chlorinated water. Staff will switch back to supplying chloramintaed water in early March 2016. New ammonia/monochloramine analyzers were installed to assist in daily operations. Routine and preventive maintenance was performed on various pieces of equipment as-needed.

D. SAMPLE LOCATIONS

Compliance monitoring is performed at the following sample locations: SP1, SP2, SP3, SP5, and SP6. The SP1 sample location is the raw well water sample location. The SP2 sample location is on the effluent side of the greensand filter (before ammonia injection or full chloramination). The SP3 sample location is downstream of the greensand filter after full chloramination and the static mixer before entering the reservoir. The SP5 sample location is the reservoir effluent sample location before entering the distribution system. The SP6 sample location is the MWD source sample location before blending occurs.

E. WATER QUALITY MONITORING

All water quality monitoring analyses were performed by laboratories certified by the Department of Health's Environmental Laboratory Accreditation Branch (ELAB). The CWPF has been continuously monitored, maintained and inspected, per the CWPF Operations Monitoring and Maintenance Plan. A brief discussion of the laboratory and/or monitoring results is provided below. Refer to Appendix A for laboratory results.

E1. IRON, MANGANESE AND COLOR

See Table 1 below for a summary of the results for the compliance monitoring at the three sample locations SP1 through SP3. Color and Iron in the raw water (SP1) for the month were below the MCL. Manganese concentrations in the raw water (SP1) were above the MCL. Iron and Manganese levels entering the reservoir (SP3) show non-detect, indicating the greensand filtration system remains highly effective. Other additional bacteriological laboratory samples collected included Total Coliform and Heterotrophic Plate Count (HPC) levels on the effluent side of the greensand filter (SP2) showing absent for both.

E2. FREE AND TOTAL CHLORINE RESIDUALS

Daily free chlorine residuals were monitored at SP2, SP3, SP4 and SP5. Daily total chlorine residuals were monitored at SP3, SP4 and SP5. Free chlorine and total chlorine residuals, at all respective sample points, were monitored using a combination of continuous chlorine analyzers and SCADA.. See Table 2 below for a weekly summary of results. Free chlorine data is only available due to Zone 1 being supplied exclusively with free chlorinated water

E3. TOTAL DISSOLVED SOLIDS (TDS), ODOR, HARDNESS AND METHANE

See Table 3 below for a summary of the results for the monitoring of Total Dissolved Solids (TDS), Odor (as measured by the Threshold Odor No. - T.O.N.), Total Hardness as Calcium Carbonate, and Methane levels in water at three sample locations SP1, SP5 and SP6.

E3-1 TOTAL DISSOLVED SOLIDS (TDS)

The sampling results indicate the TDS levels of the effluent blended water to be on average 680 mg/L. The TDS level of the effluent water meets the City's Water Quality Objective/Goal of 500 to 750 mg/L. The sampling results indicate the TDS levels in the raw water and MWD water source to be 740 mg/L and 650 mg/L, respectively.

E3-2 HARDNESS

The sampling results for the month indicate the hardness levels of the blended water to be on average 270 mg/L. Although, this hardness level is in the upper range of the City's Water Quality Objective/Goal of 180 to 250 mg/L; staff continues to monitor hardness levels at the CWPF effluent (SP5) and within the water distribution system. The City has maintained a consistent blend ratio to ensure acceptable hardness levels are met.

Staff continues to use an orthophosphate/polyphosphate additive to sequester calcium hardness. Orthophosphate/Polyphosphate is a food grade National Sanitation Foundation (NSF 60) approved additive which decreases iron tuberculation, diminishes calcium scale deposits, minimizes corrosion, reduces discoloration, reduces staining and mineral build-up resulting in fewer customer complaints.

E3-3 DISSOLVED METHANE (IN WATER)

The methane levels in the CWPF effluent after aeration treatment remain negligible averaging 2.45 mg/L.

E3-4 METHANE (IN AIR)

The methane levels in the reservoir headspace are monitored daily by staff using a handheld device. These readings have consistently read non-detect to low concentrations for methane in air. Available methane hand held monitoring instruments can only detect levels of 1% Lower Explosive Limit (LEL) or greater. The handheld methane readings during the month were below the 50,000 ppm LEL. See attached methane log for the month of February 2016 in Appendix B.

E4. NITRIFICATION MONITORING

Weekly Nitrification sampling was performed during the month of February 2016, see Appendix C.

F. TABLES

		SP1,	Well Raw	Water	Discharç	ge		Pres	, Comb ssure F Effluent	ilter	SP3, /		nloramina reservoir		atic mixe	er;
Date, week of	Iron, ug/L	*MCL = 3 00 ug/L	Manganese, ug/L	*MCL = 50 ug/L	Color	*MCL=15	Total Coliform	Total Coliform	HPC, MPN/100mL	MCL=500	Iron, mg/L	*MCL = 300 ug/L	Manganese, mg/L	*MCL = 50 ug/L	Color	*MCL=15
2/3/2016						The second					ND**	300	ND**	50	ND**	15
2/10/2016											ND	300	ND	50	ND	15
2/17/2016	180	300	130	50	7.5	15	Α	А	Α	500	ND	300	ND	50	ND	15
2/24/2016											ND	300	ND	50	ND	15

Table 1. Monitoring Results for SP1, SP2, and SP3 Sample Locations.

Notes: Monthly- Orange

Weekly- Yellow

A – Absent

ND - Non Detect

*Per the SWRCB Drinking Water "Chemicals and Contaminants in Drinking Water"

Regulations

**Sample results for 2/3/16 were used in the January 2016 report. Samples were taken on

2/19/16 to replace these.

Table 2. Monitoring Results for Free and Total Chlorine at SP2, SP3, SP4 and SP5 Sample Locations.

	SP2		SP3			SP4			SP5	
Date, week of	Free CI	Free CI	Total CI	Total NH ₃	Free CI	Total CI	Total NH ₃	Free CI	Total CI	Total NH ₃
2/3/2016	5.02	4.01	-	-	3.22	-	-	1.59	-	-
2/10/2016	5.66	5.29	-	=	3.01	-	-	1.48	-	-
2/17/2016	5.55	5.08	-	-	3.05	-	- 2	1.29	-	-
2/24/2016	5.15	4.08	-	2	3.17	-	-	0.98	No.	-

*Free chlorinated water supplied Zone 1 of the City's distribution system.

Table 3. Monitoring Requirements and Frequencies for SP1, SP5, and SP6.

		TD	S, mg/L		T.C	D.N.	Hardn	ess, mg/L		thane r), mg/L
Date, week of	SP1 - Raw Well Water	SP6 - MWD Water	SP5 - Reservoir Effluent	Goal= 500 - 750 mg/L	SP5 - Reservoir Effluent	MCL= 3	SP5 - Reservoir Effluent	Goal= 180 - 250 mg/L	SP1 - Raw Well Water	SP5 - Reservoir Effluent
2/3/2016			650*	500-750			270*	180-250		2.20*
2/10/2016			700	500-750						2.10
2/17/2016	740	650	720	500-750	1	3			9.8*	2.60
2/24/2016		7. L	650	500-750						2.90
Average			680	500-750						2.45

Notes: Monthly- Orange

Weekly- Yellow

ppm – parts per million

mg/L – milligram per liter T.O.N. - Threshold Odor Number TDS - Total Dissolved Solids

Hardness - As total CaCO3

Methane (Water) - Methane dissolved in water

*Sample results for 2/3/16 were used in the January 2016 report. Samples were taken on 2/19/16 to replace these.

Monthly CWPF Monitoring Report – FEBRUARY 2016 Cypress Water Production Facility City of Lomita; System No. 1910073

and Parameters	Frequency	MCL/ Goal	Date 1stWk/ or Mo. Result	Date 2 nd Wk	Date 3rdWk	Date 4 th Wk	Date 5 th Wk	Met Freq.? Y/N	Met Std./ SI Goal? Y/N	Comments
SP1 Also called	Well 5 Rav	v Water c	or Site#	1.						
TDS, ppm	Monthly	See SP5	740		ns Data/Info	rmation:		Υ	T	I
Hardness	Monthly	See SP5		CWPF o	peration da	ys: 29 days	(12 fill	Y		
CH4, ppm	Monthly	See SP5	9.8	Well 5 O	drawdown o	lays) vg. flow- <mark>1,0</mark> - <mark>72.11</mark> AF; [80 gpm;	Y	1	
Iron, ppb	Monthly	See SP3	180	6.01 AF				Υ		
Manganese, ppb	Monthly	See SP3	130	Combine Well5:MV	VD Blend R	WD Data: Avatio - 60%:4	verage	Υ		
Color, units	Monthly	See SP3	7.5	February	total prod	118.12 AF;		Υ		
Total Coliform, P or A	Monthly	_	Α		d <mark>9.84</mark> AF Dosage: N/	A		Υ	Y	
SP2 Also called	Filtor Efflu	ent or Si	to#3							
Total Coliform, P or A	Monthly	A	A	Operation	ns Data/Info	mation:		Υ	Υ	T
HPC,MPN/100 ml	Monthly	500	A					Y	Y	
Free Cl Res, ppm	Continuous	Average:	15721777		nia Dosag			Y		
rice Orines, ppin		Average.	J.JJ, 1	arige. J.	02 - 3.0	0		1	<u> </u>	
SP3 Also called							nding o	r Site #		
Iron, ppb	Weekly	300	ND	ND	ND	ND		Υ	Υ	
Manganese, ppb	Weekly	50	ND	ND	ND	ND		Y	Y	
Color	Weekly Continuous	15	ND	ND	ND	ND	L	Y	Y	14 (010 11 14
Free and Total CI Res, ppm	Continuous	Free CI: A			nge: 4.01	- 5.29		Υ		Met CI/NH3 Ratio? – Y/I
ppiii	1		werage.,	rtange.					1	Natio: - 1/1
SP4 Also called	Reservoir	e voon er	Average or the S) Water	Blend F	oint/Pl	nosphate	Injection.
Phosphate Injection	Reservoir	e voon er	or the S Data/Informate Dosage	ite Well	5/MW[Blend F	Point/PI	nosphate	
Phosphate Injection Free and Total Cl Res,		Influent of Operations Dependent of Phosphate	or the S Data/Informate Dosage: Average:	ite Well tion: :	1 5/MW [Blend F		nosphate	Met CI/NH3
Phosphate Injection Free and Total CI Res, ppm	Continuous	Operations D Phosphate Free CI: A Total CI: A Ammonia:	or the S Data/Informate Dosage: Average: ; Average:	ite Well tion: : 3.11; Rar Range: :; Range:	1 5/MW[- 3.22		Y		Met CI/NH3 Ratio? – Y/N
Phosphate Injection Free and Total CI Res, ppm SP5 Also called	Continuous	Operations D Phosphate Free CI: A Total CI: A Ammonia:	or the S Data/Informate Dosage: Average: ; Average:	ite Well tion: : 3.11; Rar Range: :; Range:	1 5/MW[- 3.22		Y		Met CI/NH3 Ratio? – Y/I
Phosphate Injection Free and Total CI Res, ppm SP5 Also called TDS, ppm	Continuous	Operations Dephosphate Free Cl: Ae Total Cl: Ae Ammonia: Effluent Cl: SI Goal: 500-750ppm SI Goal: SI	or the S Data/Informate Dosage: Average: 3 Average: 4 Average: 5	ite Well tion: : 3.11; Rar Range: :; Range:	nge: 3.01	- 3.22 rges int		Y 1 of the	e distribu	Met CI/NH3 Ratio? – Y/I
Phosphate Injection Free and Total CI Res, opm SP5 Also called TDS, ppm Hardness	Continuous Reservoir Weekly	Operations D Phosphate Free CI: A Total CI: A Ammonia: Effluent C SI Goal: 500-750ppm	or the S Data/Informate Dosage: Average: 3 Average: 5 Average: Or Site#	ite Well tion: : 3.11; Rar Range: :; Range:	nge: 3.01	- 3.22 rges int		Y 1 of the	e distribut	Met CI/NH3 Ratio? – Y/I
Phosphate Injection Free and Total CI Res, ppm SP5 Also called 'TDS, ppm 'Hardness CH4, ppm Odor, units	Reservoir Weekly Monthly Weekly Monthly	Influent of Operations Dephosphate Free CI: A Total CI: A Ammonia: Effluent of SI Goal: 500-750ppm SI Goal: 180-250ppm SI Goal: 1	or the S Data/Informate Dosage Average: 3 Average: 4 Average: 5 Average: 5 Average: 7 270 2.2	ite Well tion: : 3.11; Rar Range: :; Range: 75. SP5 700	discha 720	- 3.22 rges int 650		1 of the	SI Goal-Y SI Goal-Y SI Goal-Y	Met CI/NH3 Ratio? – Y/N
Phosphate Injection Free and Total CI Res, ppm SP5 Also called TDS, ppm Hardness CH4, ppm Odor, units Free and Total CI Res,	Continuous Reservoir Weekly Monthly Weekly	Influent of Operations Dephosphate Free CI: A Total CI: A Ammonia: Effluent of SI Goal: 500-750ppm SI Goal: 180-250ppm SI Goal: 1 3 Free CI: A	or the S Data/Informat e Dosage: Average: Average: Average: 5 Average: 650 270 2.2 Average:	ite Well tion: : 3.11; Rar Range: :; Range: 5. SP5 700 2.1	discha 720	- 3.22 rges int 650		1 of the	e distribut SI Goal-Y SI Goal-Y SI Goal-Y	Met CI/NH3 Ratio? – Y/I tion system %Removal Met CI/NH3
Phosphate Injection Free and Total CI Res, ppm SP5 Also called TDS, ppm Hardness CH4, ppm Odor, units Free and Total CI Res,	Reservoir Weekly Monthly Weekly Monthly	Influent of Operations Dependent of Phosphate Free Cl: A Total Cl: A Ammonia: Effluent of SI Goal: 500-750ppm SI Goal: 180-250ppm SI Goal: 1 3 Free Cl: A Total Cl: A Total Cl: A	or the S Data/Informat e Dosage: Average: Average: Average: 5 Average: Average: Average: Average: Average: Average: Average:	ite Well tion: : 3.11; Rar Range: :; Range: 5. SP5 700 2.1	discha 720 2.6 1 ge: 0.98 -	- 3.22 rges int 650		1 of the	SI Goal-Y SI Goal-Y SI Goal-Y	Met CI/NH3 Ratio? – Y/N
Phosphate Injection Free and Total CI Res, opm SP5 Also called TDS, ppm Hardness CH4, ppm Odor, units Free and Total CI Res,	Reservoir Weekly Monthly Weekly Monthly	Influent of Operations Dephosphate Free CI: A Total CI: A Ammonia: Effluent of SI Goal: 500-750ppm SI Goal: 180-250ppm SI Goal: 1 3 Free CI: A	or the S Data/Informat e Dosage: Average: Average: Average: 5 Average: Average: Average: Average: Average: Average: Average:	ite Well tion: : 3.11; Rar Range: :; Range: 5. SP5 700 2.1	discha 720 2.6 1 ge: 0.98 -	- 3.22 rges int 650		1 of the	SI Goal-Y SI Goal-Y SI Goal-Y	Met CI/NH3 Ratio? – Y/I tion system %Removal Met CI/NH3
Phosphate Injection Free and Total CI Res, ppm SP5 Also called TDS, ppm Hardness CH4, ppm Odor, units Free and Total CI Res, ppm Headspace of the C	Reservoir Weekly Monthly Weekly Monthly Continuous	Influent of Operations Dependent of Phosphate Free CI: A Total CI: A Ammonia: Effluent of SI Goal: 500-750ppm SI Goal: 180-250ppm SI Goal: 1 3 Free CI: A Total CI: A Ammonia: Servoir.	or the S Data/Informate Dosage: Average: Average: Average: 650 270 2.2 Average: Average: Average: Average: Average: Average:	ite Well tion: : : : : :3.11; Rar Range: :; Range: :5. SP5 700 2.1 1.34; Range: :; Range:	discha 720 2.6 1 ge: 0.98 -	- 3.22 rges int 650		1 of the Y	SI Goal-Y SI Goal-Y SI Goal-Y Y Y	Met CI/NH3 Ratio? – Y/I tion system %Removal Met CI/NH3
Phosphate Injection Free and Total CI Res, ppm SP5 Also called TDS, ppm Hardness CH4, ppm Odor, units Free and Total CI Res, ppm Headspace of the CI CH4 ppmv; using	Reservoir Weekly Monthly Weekly Monthly Continuous Cypress Re Daily	Influent of Operations Dependent of Phosphate Free CI: A Total CI: A Ammonia: Effluent of SI Goal: 500-750ppm SI Goal: 180-250ppm SI Goal: 1 3 Free CI: A Total CI: A Ammonia: servoir. Goal -	or the S Data/Informate Dosage: Average: Average: Average: 650 270 2.2 Average: Average: Average: Average: Average: Average: Average: Average: Average:	ite Well tion: :: 3.11; Rar Range: :; Range: 75. SP5 700 2.1 1.34; Range: :; Range:	discha 720 2.6 1 ge: 0.98 -	- 3.22 rges int 650		1 of the	SI Goal-Y SI Goal-Y SI Goal-Y	Met CI/NH3 Ratio? – Y/I tion system %Removal Met CI/NH3
Phosphate Injection Free and Total CI Res, opm SP5 Also called TDS, ppm Hardness CH4, ppm Odor, units Free and Total CI Res, opm Headspace of the CCH4 ppmv; using	Reservoir Weekly Monthly Weekly Monthly Continuous	Influent of Operations Dependent of Phosphate Free CI: A Total CI: A Ammonia: Effluent of SI Goal: 500-750ppm SI Goal: 180-250ppm SI Goal: 1 3 Free CI: A Total CI: A Ammonia: Servoir.	or the S Data/Informate Dosage: Average: Average: Average: 650 270 2.2 Average: Average: Average: Average: Average: Average: Average: Average: Average:	ite Well tion: : : : : :3.11; Rar Range: :; Range: :5. SP5 700 2.1 1.34; Range: :; Range:	discha 720 2.6 1 ge: 0.98 -	- 3.22 rges int 650		1 of the Y	SI Goal-Y SI Goal-Y SI Goal-Y Y Y	Met CI/NH3 Ratio? – Y/I tion system %Removal Met CI/NH3
Phosphate Injection Free and Total CI Res, opm SP5 Also called TDS, ppm Hardness CH4, ppm Odor, units Free and Total CI Res, opm Headspace of the C CH4 ppmv; using Portable Device SP 6 MWD Source	Reservoir Weekly Monthly Weekly Monthly Continuous Cypress Re Daily (from log)	Influent of Operations Dependent of Phosphate Free Cl: A Total Cl: A Ammonia: Effluent of SI Goal: 500-750ppm SI Goal: 180-250ppm SI Goal: 1 3 Free Cl: A Total Cl: A Ammonia: Servoir. Goal - LEL	or the S Data/Informat e Dosage: Average: Average: Average: 5 Average: CT4 Average: CH4 Av CH4 R:	ite Well tion: : : 3.11; Rar Range: :; Range: :5. SP5 700 2.1 1.34; Range: :; Range: :; Range:	discha 720 2.6 1 ge: 0.98 -	- 3.22 rges int 650 2.9	to Zone	Y 1 of the Y Y Y Y Y	SI Goal-Y SI Goal-Y Y Y SI Goal-Y	Met CI/NH3 Ratio? – Y/I tion system %Removal Met CI/NH3 Ratio? – Y/N
Phosphate Injection Free and Total CI Res, ppm SP5 Also called TDS, ppm Hardness CH4, ppm Odor, units Free and Total CI Res, ppm Headspace of the CO CH4 ppmv; using Portable Device SP 6 MWD Source	Reservoir Weekly Monthly Weekly Monthly Continuous Cypress Re Daily (from log)	Influent of Operations Dependent of Phosphate Free Cl: A Total Cl: A Ammonia: Effluent of SI Goal: 500-750ppm SI Goal: 180-250ppm SI Goal: 1 3 Free Cl: A Total Cl: A Ammonia: Servoir. Goal - LEL	or the S Data/Informat e Dosage: Average: Average: Average: 5 Average: CT4 Average: CH4 Av CH4 R:	ite Well tion: : : 3.11; Rar Range: :; Range: :5. SP5 700 2.1 1.34; Range: :; Range: :; Range:	discha 720 2.6 1 ge: 0.98 -	- 3.22 rges int 650 2.9	to Zone	Y 1 of the Y Y Y Y Y	SI Goal-Y SI Goal-Y Y Y SI Goal-Y	Met CI/NH3 Ratio? – Y/I tion system %Removal Met CI/NH3 Ratio? – Y/N
SP4 Also called Phosphate Injection Free and Total CI Res, ppm SP5 Also called ¹TDS, ppm ¹Hardness CH4, ppm Odor, units Free and Total CI Res, ppm Headspace of the C ¹CH4 ppmv; using Portable Device SP 6 MWD Sour TDS, ppm Hardness	Reservoir Weekly Monthly Weekly Monthly Continuous Cypress Re Daily (from log) Ce Feeding	Influent of Operations Dependent of Phosphate Free Cl: A Total Cl: A Ammonia: Effluent of SI Goal: 500-750ppm SI Goal: 180-250ppm SI Goal: 1 3 Free Cl: A Total Cl: A Ammonia: Servoir. Goal - LEL	or the S Data/Informat e Dosage: Average: Average: Average: 5 Average: CT4 Average: CH4 Av CH4 R:	ite Well tion: : : 3.11; Rar Range: :; Range: 5. SP5 700 2.1 1.34; Range: :; Range: :; Range: terage: 1 ange: 0%	discha 720 2.6 1 ge: 0.98 -	- 3.22 rges int 650 2.9	to Zone	1 of the Y Y Y Y Y System	SI Goal-Y SI Goal-Y Y Y SI Goal-Y	Met CI/NH3 Ratio? – Y/N tion system %Removal - Met CI/NH3 Ratio? – Y/N

Note: This Report is due to DDW by the 10th of the following month.

APPENDIX A

LABORATORY RESULTS

22 February 2016 Clinical Lab No.: 16B1645

Mark Andersen Lomita, City of 24373 Walnut Avenue Lomita, CA 91717

Project Name: Standard Analysis Sub Project: Distribution Weekly

Enclosed are the results of the analyses for samples received at the laboratory on 02/19/16 . Samples were received within temperature range, in correct containers and preservation.

Analyses were performed pursuant to client's chain of custody, within hold times, utilizing EPA or other ELAP approved methodologies.

I certify that the results are within compliance both technically and for completeness. Analytical results are attached to this letter. Please call if any additional information and or assistance are needed.

Thank you for choosing Clinical Laboratory of San Bernardino for your analytical needs.

Sincerely,

Stu Styles

Client Services Manager

Lomita, City ofProjectStandard AnalysisWork Order:16B164524373 Walnut AvenueSub Project:Distribution WeeklyReceived:02/19/16 14:05Lomita CA, 91717Project Manager:Mark AndersenReported:02/22/16

Reservoir Effluent Site PS 2		16B1645-0	01 (Water)		Sample Da	ote: 02/19/16	7:40 Sa	mpler: D	an Mateik
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
Field Analyses									
Cl Res Free (Field)	Field	5.54		N/A	mg/L	02/19/16	02/19/16	1609012	
pH (Field)	Field	7.9		N/A	pH Units	02/19/16	02/19/16	1609016	
Temperature (Field)	Field	16		N/A	°C	02/19/16	02/19/16	1609013	
Microbiology Analyses									
Total Coliform	SM 9223	A		N/A	P/A	02/19/16	02/20/16	1608560	
E. Coli	SM 9223	A		N/A	P/A	02/19/16	02/20/16	1608560	
Plate Count	SM9215B	ND	1	500	CFU/ml	02/19/16	02/21/16	1609005	HT-08

HT-08 Analysis performed outside of recommended 8 hour hold time but within required 24 hour hold time.

ND Analyte NOT DETECTED at or above the reporting limit

Chain of Custody

Client	City of Lomita 24373 Walnut Avenue Lomita, CA 91717	City of Lomita	Sy	stem N	umber		Ana	lysis	Rec	ques	sted					
Address		243	373 Walnut Avenue		101	0073	<u> </u>							i		
	1	I	omita, CA 91717		191	0073)]	į			Ž	T			
Phone #			(310) 325-9830	E	estinatio	on Labora	tory			-,		tha	tal			
ax#			(310) 325-3627] [X] Clinic	al Labora	tory			otal		ne (Har			
roject		S	tandard Analysis		RWQCB	Complian	се		Man	Diss	င်	Wa	dne	<u> </u>		
Sub Proje	ct	CWI	PF Weekly Standard			No LAP#		Iron	Manganese	Total Dissolved Solids	Color	Methane (Water) (RSK175)	Total Hardness (as CaCO3)	ТС/НРС		
Comment	8				4	088				lids		SK	СаС			
Sampled t	эу		DGM		1	000						175)	(3)			
Date	Time	San	ple Idenitification	Matrix	Туре	Preserv	Free Chlorine								Comments / P.S. Codes	_
2/19/2016	6740	Reservoir Efflue	ent Site PS #2	DW	1W	1,7	5 .54							X	TEMPINE PH 7.9	
			~													
		S ₂ O ₃ (2) HCl (3) HP 2SO3 (7) Cold (8) (Matrix	: DW-Drin Type-	 king Water 1-Routine,	r, WW- 2-Rep	-Wast beat, 3	e Wa 3-Rep	ter, S	SW-Si ment	torm , 4-S _l	Water, pecial	GW- Ground Water, A-Air W-Well D- Dist.	
	0.000.000.000.000.000.000.000	By (Sign)	Print Name / Compa	ny		Date /	Time			Rec	ceive	d By	(Sig	n)	Print Name / Company	
Daniel Mate	ik 🖋	1411	City of Lomita		2/19/2	016	12:	45	V	n	د ح	الم	0_		CLSR	
V		2~ &	Cish		2/10	116	2:0		•		72~	not			PTCB.	
Commen					1-(1-		Samples		ved: Tei	, ,	On	ice	,) Inta		
Shipped Via			[Fed X Golden State	[] UPS	[]C	lient I	Other						- `		Page _1_ of _1_	

25 February 2016 Clinical Lab No.: 16B1637

Mark Andersen Lomita, City of 24373 Walnut Avenue Lomita, CA 91717

Project Name: Standard Analysis

Sub Project: CWPF Weekly Standard

Enclosed are the results of the analyses for samples received at the laboratory on 02/19/16. Samples were received within temperature range, in correct containers and preservation.

Analyses were performed pursuant to client's chain of custody, within hold times, utilizing EPA or other ELAP approved methodologies.

I certify that the results are within compliance both technically and for completeness. Analytical results are attached to this letter. Please call if any additional information and or assistance are needed.

Thank you for choosing Clinical Laboratory of San Bernardino for your analytical needs.

Sincerely,

Stu Styles

Client Services Manager

Lomita, City ofProject:Standard AnalysisWork Order:16B163724373 Walnut AvenueSub Project:CWPF Weekly StandardReceived:02/19/16 14:05Lomita CA, 91717Project Manager:Mark AndersenReported:02/25/16

Reservoir Effluent Site SP #3		16B1637-0	01 (Water)		Sample Da	te: 02/19/16	8:10 Sa	mpler: D	GM
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
Field Analyses									
Cl Res Free (Field)	Field	4.3		N/A	mg/L	02/19/16	02/19/16	1608545	
pH (Field)	Field	7.2		N/A	pH Units	02/19/16	02/19/16	1608543	
Temperature (Field)	Field	15.9		N/A	°C	02/19/16	02/19/16	1608544	
General Physical Analyses									
Apparent Color	SM 2120B	ND	3.0	15	Color Units	02/19/16	02/19/16	1609009	
Metals									
Iron (Fe)	EPA 200.7	ND	100	300	ug/L	02/22/16	02/22/16	1609010	
Manganese (Mn)	EPA 200.7	ND	20	50	ug/L	02/22/16	02/22/16	1609010	
ND Analyte NOT DETECTED at or	above the reporting limit	t							

EDT Transfer Confirmation 1

Sampled: 160219 08:10

Entry No.: 00081 Analyzed: 160219

Work Order: 16B1637 Report Date: 02/25/2016

WELL 05 TREATMENT PLANT EFFLUENT

Analyzing Lab: Clinical Laboratory of San Bernardino, Inc. ELAP 1088

Result: ND

System: 1910073 LOMITA-CITY, WATER DEPT. User ID: 4TH

Station No.: 1910073-006

Units: UNITS

Entry No.: 01045 Analyzed: 160222 IRON Result: ND Units: UG/L MANGANESE Entry No.: 01055 Analyzed: 160222 Result: ND Units: UG/L

·(LoBILO37 Chain of Custody Oli [1

	Jul	7717
į	CHIPAL	in the second
((Korn)	7
,		127
'	+	7
•	ナンない	2
٠	to cototo ot	to Cionario
, , ,	to worthow of	to financian of
	to wotoroup I point	men successfully of sail Delimination,

Client		•	City of Lomita	Syi	stem N	System Number		Analy	Analysis Requested	sanba	ted				
Address		24	24373 Walnut Avenue		107	1010072		-	_		\vdash				
			Lomita, CA 91717		2	7 700						Te			
Phone #			(310) 325-9830	a	estinatic	Destination Laboratory	tory					otal			-
Fax#			(310) 325-3627	1	(] Clinic	[X] Clinical Laboratory	tory								
Project		1	Standard Analysis		RWQCB	RWQCB Compliance	8			C					
Sub Project		CA	CWPF Weekly Standard		jil)	No ELAP#		ron	ganese	olor	iter) (HPC ess (as			
Comments					7	000			olids			CaC			
Sampled by			DGM		_	000						 CO3)			
Date	Lime		Sample Idenitification	Matrix	Туре	Preserv	Free				-++	,		Comments / P.S. Codes	اري
-		,						+	+			-			
2/19/2016	\$18%	Reservoir Effluent Site SP #3	uent Site SP #3	DW	WI	1,7	4,3Ø	X	X	×				TEMP'15.9 PH 7.2	
								++				+	- -		
Preservatives:	(1) Na.	Preservatives: (1) Na ₂ S ₂ O ₃ (2) HCI (3) HNO3 (4) NH4CI	HNO3 (4) NH4CI		Matrix.	DW-Drin	king Water,	WW-W	aste M	ater, S	W-Sto	rm Wa	ter, GI	Matrix: DW-Drinking Water, WW-Waste Water, SW-Storm Water, GW- Ground Water, A-Air	
(5) HZSO4	(6) N	(5) H2SO4 (6) Na2SO3 (7) Cold (8) Other:				-adkı	I-Routine, A	aday-	שני ט-ע	biacei	mernt,	nade-	Idi W	Type- I-Routille, Z-Repeat, 3-Replacement, 4-Special W-Well D- DISt.	T
Relingui	ished	Relinquished By (Sign)	Print Name / Company			Date / Time	Time		4	Received By (Sign)	d By (Sign)		Print Name / Company	
Daniel Mateik	1	word	City of Lomita		2/19/2016	916	<u>ት'</u> በ	~	Z	J	9	0		CES1B	
3	d	9	CCSR		2/4	7//	2,06	<u>ر</u> لا	9	N	1	M		70/2	SB
Comments:	12				_	9 1	Samples received: (éceivé	Temp	000)= \ <u>3</u> = \(\cdot \)	\$\	Intact) F (() Custody seals) C	
Shipped Via			[] Fed X [] Golden State	Sdn []	[] Client		[] Other						1	$Page_{-1}$ _of_1_	

03 March 2016 Clinical Lab No.: 16B1639

Mark Andersen Lomita, City of 24373 Walnut Avenue Lomita, CA 91717

Project Name: Standard Analysis

Sub Project: CWPF Weekly Standard

Enclosed are the results of the analyses for samples received at the laboratory on 02/19/16. Samples were received within temperature range, in correct containers and preservation.

Analyses were performed pursuant to client's chain of custody, within hold times, utilizing EPA or other ELAP approved methodologies.

I certify that the results are within compliance both technically and for completeness. Analytical results are attached to this letter. Please call if any additional information and or assistance are needed.

Thank you for choosing Clinical Laboratory of San Bernardino for your analytical needs.

Sincerely,

Stu Styles

Client Services Manager

Lomita, City ofProjectStandard AnalysisWork Order:16B163924373 Walnut AvenueSub Project:CWPF Weekly StandardReceived:02/19/16 14:05Lomita CA, 91717Project Manager:Mark AndersenReported:03/03/16

Reservoir Effluent Site SP #5		16B1639-0	01 (Water)		Sample Da	ate: 02/19/16	5 8:11 Sa	mpler: D	GM
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
Field Analyses									
Cl Res Free (Field)	Field	1.54		N/A	mg/L	02/19/16	02/19/16	1609331	
pH (Field)	Field	7.5		N/A	pH Units	02/19/16	02/19/16	1609332	
Temperature (Field)	Field	19		N/A	°C	02/19/16	02/19/16	1609333	
General Chemical Analyses									
Hardness, Total (as CaCO3)	Calculated	270	6.6	N/A	mg/L	02/22/16	02/22/16	[CALC]	
Total Filterable Residue/TDS	SM 2540C	650	5.0	1000	mg/L	02/22/16	02/23/16	1609048	
Metals									
Calcium (Ca)	EPA 200.7	72	1.0	N/A	mg/L	02/22/16	02/22/16	1609041	
Magnesium (Mg)	EPA 200.7	23	1.0	N/A	mg/L	02/22/16	02/22/16	1609041	
ND Analyte NOT DETECTED at or	above the reporting limi		1.0						

Analytical Laboratory Service - Since 1964

Certificate of Analysis

Report Date: 03/03/16 11:58 Received Date: 02/22/16 13:00 Turnaround Time: 5 workdays

Phones: (909) 825-7693

Fax: (909) 825-7696

P.O. #:

Attn: John Styles

Project: 16B1639

Client: Clinical Laboratory of San Bernardino, Inc.

21881 Barton Road Grand Terrace, CA 92313

Dear John Styles:

Enclosed are the results of analyses for samples received 2/22/2016 with the Chain of Custody document. The samples were received in good condition, at 2.9 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Lab ID: 6B22043-01	Sample	ID: F	Reservoir E	ffluent Site	SP #5 /	16B1639-01			Ma	atrix: Water
Sampled by: Client	Sampled	l: 02/19/	16 08:11							
Analyte	Result	MDL	MRL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
Methane	2.2		0.010	mg/l	1	RSK-175	2/23/16	2/23/16 17:57	W6B1352	

6B22043 Page 1 of 3

Certificate of Analysis

Quality Control Section

Dissolved Gases in Water by RSK-175 - Quality Control

Blank (W6B1352-BLK1)					Prepared: 02	/23/16 Ana	alyzed: 02/23	3/16 14:41	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Methane		ND		mg/l					
LCS (W6B1352-BS1)					Prepared: 02	/23/16 Ana	alyzed: 02/23	3/16 15:58	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Methane		0.190		mg/l	0.198	96	85-115		
Duplicate (W6B1352-DUP1)	s	ource: 6B1904	3-01		Prepared: 02	/23/16 Ana	alyzed: 02/23	3/16 17:37	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
-	1.59	1.48		mg/l				7	20

6B22043 Page 2 of 3

Certificate of Analysis

Notes:

The Chain of Custody document is part of the analytical report.

Any remaining sample(s) for testing will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

An Absence of Total Coliform meets the drinking water standards as established by the State of California Department of Health Services. The Reporting Limit (RL) is referenced as laboratory's Practical Quantitation Limit (PQL).

For Potable water analysis, the Reporting Limit (RL) is referenced as Detection Limit for reporting purposes (DLRs) defined by EPA.

If sample collected by Weck Laboratories, sampled in accordance to lab SOP MIS002

ELAP # 1132 LACSD # 10143 **NELAC #4047-002 ORELAP**

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Weck Laboratories certifies that the test results meet all requirements of NELAC unless noted in the Case Narrative. This analytical report must be reproduced in its

Flags for Data Qualifiers:

(Project Manager)

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method

Detection Limit (MDL).

Subcontracted analysis, original report enclosed. Sub

DL Method Detection Limit RL Method Reporting Limit MDA Minimum Detectable Activity

NR Not Reportable

6B22043 Page 3 of 3

SUBCONTRACT ORDER

Clinical Laboratory of San Bernardino 16B1639

6B22043

SENDING LABORATORY:	RECEIVING LABORATORY:
Clinical Laboratory of San Bernardino 21881 Barton Road Grand Terrace, CA 92313 Phone: 909.825.7693 Fax: 909.825.7696 Project Manager: Stu Styles	Weck Lab, Analytical & Environmental Analytical & Environmental Svc 14859 E Clark Ave Industry, CA 91745 Phone: (626) 336-2139 Fax: (626) 336-2634
Please email results to Project Manager: Stu Styles [] glaubig@clinical-lab.com [] ybarra@clinical-lab California EDT transfer those samples with PS or Transfer File requested; log in with Element ID or	.com [v styles@clinical-lab.com [] nelson@clinical-lab.com odes provided [] Yes [v] No only [] Yes [v] No
Turn Around Time [] 10 Days	
Analysis	Comments
Sample ID: Reservoir Effluent Site SP #5 / 16B1639-01	Sampled: 02/19/16 08:11 PS Code: Water WTX ID:
Methane RSK175	Report in mg/L
Methane RSK175 Containers Supplied:	Report in mg/L

| Date / Time | Date / Date /

16B163839 Chain of Custody

0/1/3

Client			City of Lomita	Sy	stem N	umber		Ana	ılysi	s Re	que	sted					
Address		24	373 Walnut Avenue		101	0073	!										
]	Lomita, CA 91717		191	0073						Z	To				
Phone #			(310) 325-9830		estinatio	on Labora	tory					etha	tal				
Fax#			(310) 325-3627][X] Clinic	al Labora	tory			otal		ne	Har				
Project			Standard Analysis		RWQCB	Complian	Ce		Наг	Diss	C	(Wa	one.	TC/			
Sub Projec	.	CW	PF Weekly Standard			No _AP#		Iron	Hardness	Total Dissolved Solids	Color	Methane (Water) (RSK175)	Total Hardness (as CaCO3)	ТС/НРС			
Comments					4	088				ids		SK	CaC				
Sampled b	У		DGM		•	000						175)	(3)				
Date	Time	Sar	mple Idenitification	Matrix	Туре	Preserv	Free Chlorine									Comments / P.S. Codes	
																	_
																TEMP. 19.0 PH 1.5	5
2/19/2016	6811	Reservoir Efflu	ent Site SP # 5	DW	1W		1.54	ļ	X	X		X				MES. SEE BOTTLE	4
								-									4
		, /						ļ									<u>.</u>
								\vdash		ļ		ļ	ļ				-
								-				-		\vdash			-
								+-	-			-					-
	<u> </u>							+									· '
					 			+				-		\vdash			-
										_		-					╡
Preservative	S: (1) Na	S ₂ O ₃ (2) HCl (3) H	NO3 (4) NH4CI		Matrix	DW-Drini	king Wate	r, WW	-Was	te Wa	iter, S	SW-S	torm	Water	, GV	V- Ground Water, A-Air	1 1
		2803 (7) Cold (8)				Туре-	1-Routine,	2-Re	peat,	3-Re	olace	ment	t, 4-S	pecial	W-	Well D- Dist.	until de la companya
Relin	quished .	By (Sign)	Print Name / Compan	Y		Date/	Time			Re	ceive	ed By	(Sig	(n)		Print Name / Company	
Daniel Matei	k N-	MAJ	City of Lomita		2/19/2	016	11:4	18		m	ے	فہ	l			CCSB	
m	CQ.	0	CCSD		2/1	7/15	210	5		7	-	^	7	>	\	H. Brez/CLSB	
Commen	ts:					5	Samples	recei		mp_		ice O) F	act	() Custody seals) C	
Shipped Via	T		[] Fed X [] Golden State	[] UPS	[]C	lient [Other						- `		<u>`</u>	Page _1_ of _1_	

25 February 2016 Clinical Lab No.: 16B0931

Mark Andersen Lomita, City of 24373 Walnut Avenue Lomita, CA 91717

Project Name: Standard Analysis

Sub Project: CWPF Weekly Compliance Analysis

Enclosed are the results of the analyses for samples received at the laboratory on 02/10/16. Samples were received within temperature range, in correct containers and preservation.

Analyses were performed pursuant to client's chain of custody, within hold times, utilizing EPA or other ELAP approved methodologies.

I certify that the results are within compliance both technically and for completeness. Analytical results are attached to this letter. Please call if any additional information and or assistance are needed.

Thank you for choosing Clinical Laboratory of San Bernardino for your analytical needs.

Sincerely,

Stu Styles

Client Services Manager

tistes

Lomita, City ofProject:Standard AnalysisWork Order:16B093124373 Walnut AvenueSub Project:CWPF Weekly Compliance AnalysisReceived:02/10/16 15:30

Lomita CA, 91717 Project Manager: Mark Andersen Reported: 02/25/16

Filter Effluent Site #3		16B0931-	01 (Water)		Sample Da	te: 02/10/16	8:45 Sa	mpler: Do	GM
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
Field Analyses									
Cl Res Free (Field)	Field	3.96		N/A	mg/L	02/10/16	02/10/16	1607450	
Temperature (Field)	Field	18.9		N/A	°C	02/10/16	02/10/16	1607451	
General Physical Analyses									
Apparent Color	SM 2120B	ND	3.0	15	Color Units	02/10/16	02/10/16	1607529	
Metals									
Iron (Fe)	EPA 200.7	ND	100	300	ug/L	02/16/16	02/16/16	1608081	
Manganese (Mn)	EPA 200.7	ND	20	50	ug/L	02/16/16	02/16/16	1608081	
Reservoir Effluent Site #5		16B0931-0	02 (Water)		Sample Da	te: 02/10/16	8:45 Sa	mpler: D	GM
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
Field Analyses									
Cl Res Free (Field)	Field	1.1		N/A	mg/L	02/10/16	02/10/16	1607450	
Temperature (Field)	Field	18.9		N/A	°C	02/10/16	02/10/16	1607451	
General Chemical Analyses									
Total Filterable Residue/TDS	SM 2540C	700	5.0	1000	mg/L	02/11/16	02/12/16	1607476	
ND Analyte NOT DETECTED at or	above the reporting limit	t							

EDT Transfer Confirmation 1

Work Order: 16B0931 Report Date: 02/25/2016

Analyzing Lab: Clinical Laboratory of San Bernardino, Inc. ELAP 1088

System: 1910073 LOMITA-CITY, WATER DEPT. User ID: 4TH WELL 05 TREATMENT PLANT EFFLUENT Station No.: 1910073-006 Sampled: 160210 08:45 Units: UNITS Entry No.: 00081 Analyzed: 160210 Result: ND Entry No.: 01045 Analyzed: 160216 IRON Units: UG/L Result: ND MANGANESE Entry No.: 01055 Analyzed: 160216 Result: ND Units: UG/L

Printed: 02/25/2016 03:05:02 PM Results of 16B0931 FINAL WRITEON 1910073-006

Analytical Laboratory Service - Since 1964

Certificate of Analysis

Report Date: 02/19/16 08:18 Received Date: 02/11/16 12:45 Turnaround Time: 5 workdays

Phones: (909) 825-7693 **Fax:** (909) 825-7696

P.O. #:

Project: 16B0931

Attn: John Styles

Client: Clinical Laboratory of San Bernardino, Inc.

21881 Barton Road Grand Terrace, CA 92313

Dear John Styles:

Enclosed are the results of analyses for samples received 2/11/2016 with the Chain of Custody document. The samples were received in good condition, at 2.7 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Lab ID: 6B11036-01	Sample	ID: F	Reservoir E	ffluent Site	#5 / 16	B0931-02			Ma	atrix: Water
Sampled by: Client	Sampled	l: 02/10/	16 08:45							
Analyte	Result	MDL	MRL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
Methane	2.1		0.010	mg/l	1	RSK-175	2/12/16	2/13/16 0:56	W6B0914	

6B11036 Page 1 of 3

Certificate of Analysis

Quality Control Section

Dissolved Gases in Water by RSK-175 - Quality Control

Blank (W6B0914-BLK1)					Prepared: 02	/12/16 An	alyzed: 02/1	2/16 16:40	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Methane		ND		mg/l					
Blank (W6B0914-BLK2)					Prepared: 02	/16/16 An	alyzed: 02/10	5/16 15:29	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Ethane		ND		mg/l					
Ethene		ND		mg/l					
LCS (W6B0914-BS1)					Prepared: 02	/12/16 An	alyzed: 02/1	2/16 17:20	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Methane		0.218		mg/l	0.198	110	85-115		
LCS (W6B0914-BS2)					Prepared: 02	/16/16 An	alyzed: 02/10	5/16 16:09	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Ethane		0.729		mg/l	0.660	111	85-115		
Ethene		0.594		mg/l	0.560	106	85-115		
Duplicate (W6B0914-DUP1)	S	ource: 6B1107	0-01		Prepared: 02	/12/16 An	alyzed: 02/13	3/16 02:54	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Methane	ND	ND		mg/l					
Ethane	ND	ND		mg/l					
Ethene	ND	ND		mg/l					

6B11036 Page 2 of 3

Certificate of Analysis

Notes:

The Chain of Custody document is part of the analytical report.

Any remaining sample(s) for testing will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

An Absence of Total Coliform meets the drinking water standards as established by the State of California Department of Health Services. The Reporting Limit (RL) is referenced as laboratory's Practical Quantitation Limit (PQL).

For Potable water analysis, the Reporting Limit (RL) is referenced as Detection Limit for reporting purposes (DLRs) defined by EPA.

If sample collected by Weck Laboratories, sampled in accordance to lab SOP MIS002

Authorized Signature

ELAP # 1132 LACSD # 10143 **NELAC #4047-002 ORELAP**

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Weck Laboratories certifies that the test results meet all requirements of NELAC unless noted in the Case Narrative. This analytical report must be reproduced in its

Flags for Data Qualifiers:

(Project Manager)

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method

Detection Limit (MDL).

Subcontracted analysis, original report enclosed. Sub

DL Method Detection Limit RL Method Reporting Limit MDA Minimum Detectable Activity

NR Not Reportable

6B11036 Page 3 of 3

SUBCONTRACT ORDER

Clinical Laboratory of San Bernardino

16B0931

6B11036

RECEIVING LABORATORY:	SENDING LABORATORY:
Weck Lab, Analytical & Environmental Analytical & Environmental Svc 14859 E Clark Ave Industry, CA 91745 Phone:(626) 336-2139 Fax: (626) 336-2634	Clinical Laboratory of San Bernardino 21881 Barton Road Grand Terrace, CA 92313 Phone: 909.825.7693 Fax: 909.825.7696 Project Manager: Stu Styles
2,1	Please email results to Project Manager: Stu Styles [] glaubig@clinical-lab.com [] ybarra@clinical-la California EDT transfer those samples with PS Transfer File requested; log in with Element ID
•	Turn Around Time [] 10 Days [v] 5 Days [Subcontract Comments:
Comments	Analysis
Sampled: 02/10/16 08:45 PS Code: Water WTX ID:	Sample ID: Reservoir Effluent Site #5 / 16B0931-02
Report in mg/L	Methane RSK175
(C)	40ml Amber Vial (B) 40ml Amber
	Containers Supplied:

Released By

Chris Markey

02/11/16 07:50

6/12:45

Received By

2-11-16 / 11:30 Date / Time

2/11/10 1245 2.7°

Received By

Date / Time

Clinical Laboratory of San Bernardino, Inc.

Client	City of Lomita	Sys	System Number	ımber		Anal	ysis I	Analysis Requested	ested			
Address	24373 Walnut Avenue		101	1910073								
	Lomita, CA 91717		- 6 -						Me			
Phone #	(310) 325-9830	э <i>0</i>	stinatio	Destination Laboratory	tory		1	- 7	etha			
Fax #	(310) 325-3627	×] Clinica	[X] Clinical Laboratory	tory			otal	ne			
Project	Standard Analysis	4	WQCB (RWQCB Compliance	ey	Iı						
Sub Project	CWPF Weekly Compliance Sampling			No ELAP#		on	ganese	olor	ter) (R			
Comments			7	1088				lide	RSK1			
Sampled by	DGM			900					175)			
Date Time	ne Sample Idenitification	Mattrix	Type	Preserv	Chlorine						Comments / P.S. Codes	Codes
2/10/2016 884	よるなら Filter Effluent Site #3	DW	1W	N/A	3,96	×	×	×			78MP18.9	
2/10/2016 8/645	% Reservoir Effluent Site #5	DW	1W	N/A	1.18			×				
2/10/2016 (2/8%)	d84s Reservoir Effluent Site #5	DW	1W	HCL				-	×		18M > 18,9	
							+	+				
								-				
								-				
							+					
Preservatives: (1)	Preservatives: (1) Na ₂ S ₂ O ₃ (2) HCl (3) HNO3 (4) NH4Cl		Matrix:	DW-Drin		, WW-I	Vaste	Water,	SW-Stc	rm Wate		
(5) H2SO4 (6)	(5) H2SO4 (6) Na2SO3 (7) Cold (8) Other:			Type-	Type- 1-Routine,	2-Repeat,	eat, 3-1	Replac	ement,	3-Replacement, 4-Special	M-Well	
Relinquishe	Relinquished By (Sign) Print Name / Company			Date / Time	Time			Récei	Received By	(Sign)	Print Name / Company	npany
Danier Matéik (City, of Lomita		2/10/2016	16 / 1	1.75			Ĺ	7		であるだけ	11 12
	SAN TAKONOGOS		2.0.5		3,8	7	Y	1	1		Ŧ,	चिङ्गा
Comments:					Samples received? Tel	recen	Temp		ة \ر. ع		Intact () Custody seals	<u>~</u>
Chinned Via	Fed X Golden State	Sdn []	[] Client	İ	[] Other						Phge_1_of_1_	
Suppen ru												

03 March 2016 Clinical Lab No.: 16B1545

Mark Andersen Lomita, City of 24373 Walnut Avenue Lomita, CA 91717

Project Name: Standard Analysis
Sub Project: Monthly Compliance

Enclosed are the results of the analyses for samples received at the laboratory on 02/17/16. Samples were received within temperature range, in correct containers and preservation.

Analyses were performed pursuant to client's chain of custody, within hold times, utilizing EPA or other ELAP approved methodologies.

I certify that the results are within compliance both technically and for completeness. Analytical results are attached to this letter. Please call if any additional information and or assistance are needed.

Thank you for choosing Clinical Laboratory of San Bernardino for your analytical needs.

Sincerely,

Stu Styles

Client Services Manager

Lomita, City ofProjectStandard AnalysisWork Order:16B154524373 Walnut AvenueSub Project:Monthly ComplianceReceived:02/17/16 16:20Lomita CA, 91717Project Manager:Mark AndersenReported:03/03/16

Raw Water Site #1		16B1545-0	01 (Water)		Sample Dat	te: 02/17/16	5:20 Sa	ampler: D	OGM
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
Field Analyses									
Temperature (Field)	Field	19		N/A	°C	02/17/16	02/17/16	1608507	
Microbiology Analyses									
Total Coliform	SM 9223	Α		N/A	P/A	02/17/16	02/18/16	1608366	
E. Coli	SM 9223	A		N/A	P/A	02/17/16	02/18/16	1608366	
General Physical Analyses									
Apparent Color	SM 2120B	7.5	3.0	15	Color Units	02/17/16	02/17/16	1608371	
General Chemical Analyses									
Total Filterable Residue/TDS	SM 2540C	740	5.0	1000	mg/L	02/18/16	02/19/16	1608321	
Metals									
Iron (Fe)	EPA 200.7	180	100	300	ug/L	02/22/16	02/22/16	1609010	
Manganese (Mn)	EPA 200.7	130	20	50	ug/L	02/22/16	02/22/16	1609010	
Filter Effluent (Total Chlorine) Site #3		16B1545-0	02 (Water)		Sample Dat	te: 02/17/16	5:40 Sa	ampler: D	OGM
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
Field Analyses									
Cl Res Free (Field)	Field	4.98		N/A	mg/L	02/17/16	02/17/16	1608506	
	T: 11								
Temperature (Field)	Field	19.1		N/A	°C	02/17/16	02/17/16	1608507	
Temperature (Field) <u>General Physical Analyses</u>	Field	19.1		N/A	°C	02/17/16	02/17/16	1608507	
•	SM 2120B	19.1 ND	3.0	N/A	°C Color Units	02/17/16	02/17/16	1608507 1608371	
General Physical Analyses			3.0						
General Physical Analyses Apparent Color			3.0						
General Physical Analyses Apparent Color Metals	SM 2120B	ND		15	Color Units	02/17/16	02/17/16	1608371	
General Physical Analyses Apparent Color Metals Iron (Fe)	SM 2120B EPA 200.7	ND ND ND	100	15	Color Units	02/17/16 02/22/16 02/22/16	02/17/16 02/22/16 02/22/16	1608371 1609010 1609010	o G M
General Physical Analyses Apparent Color Metals Iron (Fe) Manganese (Mn)	SM 2120B EPA 200.7	ND ND ND	100 20	15	Color Units ug/L ug/L	02/17/16 02/22/16 02/22/16	02/17/16 02/22/16 02/22/16	1608371 1609010 1609010	OGM Qualifier
General Physical Analyses Apparent Color Metals Iron (Fe) Manganese (Mn) Zone #2 Site #6 Analyte	SM 2120B EPA 200.7 EPA 200.7	ND ND ND 16B1545-0	100 20 03 (Water)	15 300 50	Color Units ug/L ug/L Sample Dat	02/17/16 02/22/16 02/22/16 te: 02/17/16	02/17/16 02/22/16 02/22/16 5:50 Sa	1608371 1609010 1609010 ampler: D	
General Physical Analyses Apparent Color Metals Iron (Fe) Manganese (Mn) Zone #2 Site #6 Analyte Field Analyses	SM 2120B EPA 200.7 EPA 200.7	ND ND ND 16B1545-0	100 20 03 (Water)	15 300 50 MCL	Color Units ug/L ug/L Sample Dat	02/17/16 02/22/16 02/22/16 te: 02/17/16	02/17/16 02/22/16 02/22/16 5:50 Sa	1608371 1609010 1609010 ampler: D	
General Physical Analyses Apparent Color Metals Iron (Fe) Manganese (Mn) Zone #2 Site #6 Analyte	SM 2120B EPA 200.7 EPA 200.7 Method	ND	100 20 03 (Water)	15 300 50	Color Units ug/L ug/L Sample Dat	02/17/16 02/22/16 02/22/16 te: 02/17/16 Prepared	02/17/16 02/22/16 02/22/16 5:50 Sa	1608371 1609010 1609010 ampler: D Batch	

Lomita, City ofProject:Standard AnalysisWork Order:16B154524373 Walnut AvenueSub Project:Monthly ComplianceReceived:02/17/16 16:20Lomita CA, 91717Project Manager:Mark AndersenReported:03/03/16

Reservoir Effluent Site #5		16B1545-0	04 (Water)		Sample Da	ote: 02/17/16	5 5:30 Sa	mpler: Do	GM
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
Field Analyses									
Cl Res Free (Field)	Field	1.54		N/A	mg/L	02/17/16	02/17/16	1608506	
Temperature (Field)	Field	19.5		N/A	°C	02/17/16	02/17/16	1608507	
General Physical Analyses									
Odor Threshold	EPA 140.1M	1	1	3	TON	02/17/16	02/17/16	1608371	
General Chemical Analyses									
Total Filterable Residue/TDS	SM 2540C	720	5.0	1000	mg/L	02/18/16	02/19/16	1608321	
ND Analyte NOT DETECTED at o	r above the reporting limit	-							

EDT Transfer Confirmation 1

Work Order: 16B1545 Report Date: 03/03/2016

Analyzing Lab: Clinical Laboratory of San Bernardino, Inc. ELAP 1088

LOMITA-CITY, WATER DEPT. User ID: 4TH System: 1910073 Station No.: 1910073-003 WELL 05 Sampled: 160217 05:20 SOURCE TEMPERATURE C Units: C Entry No.: 00010 Analyzed: 160217 Result: 19 Result: 7.5 Units: UNITS Entry No.: 00081 Analyzed: 160217 COLOR Entry No.: 01045 Analyzed: 160222 IRON Result: 180 Units: UG/L MANGANESE Result: 130 Units: UG/L Entry No.: 01055 Analyzed: 160222 Entry No.: 70300 Analyzed: 160219 TOTAL DISSOLVED SOLIDS Result: 740 Units: MG/L WELL 05 TREATMENT PLANT EFFLUENT Station No.: 1910073-006 Sampled: 160217 05:40 SOURCE TEMPERATURE C Result: 19.1 Units: C Entry No.: 00010 Analyzed: 160217 COLOR Result: ND Units: UNITS Entry No.: 00081 Analyzed: 160217 Entry No.: 01045 Analyzed: 160222 TRON Result: ND Units: UG/L Units: UG/L Entry No.: 01055 Analyzed: 160222 MANGANESE Result: ND

Certificate of Analysis

Report Date: 03/08/16 13:38 Received Date: 02/17/16 09:28 Turnaround Time: 5 workdays

Phones: (909) 825-7693 **Fax:** (909) 825-7696

P.O. #:

Attn: John Styles

Project: 16B1545

Client: Clinical Laboratory of San Bernardino, Inc.

21881 Barton Road Grand Terrace, CA 92313

Dear John Styles:

Enclosed are the results of analyses for samples received 2/17/2016 with the Chain of Custody document. The samples were received in good condition, at 1.9 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Lab ID: 6B19042-01 Sampled by: Client	Sample I Sampled		Reservoir E 16 05:20	Effluent Site	#5 / 16E	1545-04			Ма	trix: Water
Analyte	Result	MDL	MRL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
Methane	2.6		0.20	mg/l	20	RSK-175	2/23/16	2/23/16 16:37	W6B1352	
Lab ID: 6B19042-02	Sample I	D: I	Raw Water	Site #1 / 16	B1545-0	<u> </u>			Ma	trix: Water
Lab ID: 6B19042-02 Sampled by: Client	Sample I			Site #1 / 16	B1545-0 ⁻	l			Ma	trix: Water
				Site #1 / 16 Units	B1545-0 ⁻	l Method	Prepared	Analyzed	Ma Batch	trix: Water Qualifier

Certificate of Analysis

Quality Control Section

Dissolved Gases in Water by RSK-175 - Quality Control

Blank (W6B1352-BLK1)					Prepared: 02	/23/16 Ana	alyzed: 02/23	3/16 14:41	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Methane		ND		mg/l					
LCS (W6B1352-BS1)					Prepared: 02	/23/16 Ana	alyzed: 02/23	3/16 15:58	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Methane		0.190		mg/l	0.198	96	85-115		
Duplicate (W6B1352-DUP1)	s	ource: 6B1904	3-01		Prepared: 02	/23/16 Ana	alyzed: 02/23	3/16 17:37	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Methane	1 59	1 48		ma/l				7	20

Certificate of Analysis

Case Narrative:

SUPP report generated to switch sample names to match the correct data sets per client request. BG 3/03/16

Notes:

The Chain of Custody document is part of the analytical report.

Any remaining sample(s) for testing will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

An Absence of Total Coliform meets the drinking water standards as established by the State of California Department of Health Services. The Reporting Limit (RL) is referenced as laboratory's Practical Quantitation Limit (PQL).

For Potable water analysis, the Reporting Limit (RL) is referenced as Detection Limit for reporting purposes (DLRs) defined by EPA.

If sample collected by Weck Laboratories, sampled in accordance to lab SOP MIS002

Authorized Signature

ELAP # 1132 LACSD # 10143 NELAC #4047-002 ORELAP

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Weck Laboratories certifies that the test results meet all requirements of NELAC unless noted in the Case Narrative. This analytical report must be reproduced in its entirety.

Flags for Data Qualifiers:

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method

Detection Limit (MDL).

Sub Subcontracted analysis, original report enclosed.

DL Method Detection Limit
RL Method Reporting Limit
MDA Minimum Detectable Activity

NR Not Reportable

6B19042 Page 3 of 3

SUBCONTRACT ORDER

Clinical Laboratory of San Bernardino

16B1545

GB19042

SENDING LABORATORY:	RECEIVING LABORATORY:
Clinical Laboratory of San Bernardino 21881 Barton Road Grand Terrace, CA 92313 Phone: 909.825.7693 Fax: 909.825.7696 Project Manager: Stu Styles	Weck Lab, Analytical & Environmental Analytical & Environmental Svc 14859 E Clark Ave Industry, CA 91745 Phone: (626) 336-2139 Fax: (626) 336-2634
Please email results to Project Manager: Stu Styles [] glaubig@clinical-lab.com [] ybarra@clinic California EDT transfer those samples with Transfer File requested; log in with Element Turn Around Time [] 10 Days [5 Days Subcontract Comments:	Al-lab.com [styles@clinical-lab.com [] nelson@clinical-lab.com PS codes provided [] Yes [No t ID only [] Yes [No
Analysis	Comments
Sample ID: Raw Water Site #1 / 16B1545-01	Sampled: 02/17/16 05:20 PS Code: Water WTX ID:
Methane RSK175 Containers Supplied: 40mL Amber Vial w/ Na2S2O3 (B) 40mL A	Report in mg/L Amber Vial w/ Na2S2O3 (C)
Sample ID: Reservoir Effluent Site #5 / 16B1545-04	Sampled: 02/17/16 05:30 PS Code: Water WTX ID:
Methane RSK175 Containers Supplied: 40mL Amber Vial HCl (B) 40mL A	Report in mg/L amber Vial HCl (C)
	1.9 2
Released By O2/18/16 Date / Time Released By Date / Time	14:45 M Clah 2/125 Received By Date/Time 25 Received By 19/16 09:28

Clin	iical Labi	Clinical Laboratory of San Bernardino, Inc.	vc.					D.		\sim	23		Chai	10BIS45 Chain of Custody	tody	
Client		City of Lomita	Sys	stem N	System Number		Analysis		Sedu	Requested						
Address		24373 Walnut Avenue		101	1910073											
	•	Lomita, CA 91717		5								IVIC	Me			
Phone #		(310) 325-9830	ď	estinatic	Destination Laboratory	ory]		He		tiia	tha			
Fax#		(310) 325-3627	D	(] Clinic	[X] Clinical Laboratory	ory		lror	To			iie (ne (
Project		Standard Analysis	•	NAGCB	RWQCB Compliance	ę,					(WA			_
		#			YES			. C Ma			Cole	Ode	TF			
Sub Project	,	Monthly Compliance		回	ELAP#				lifor		or		ER)			
Comments		Plant operating on Free CL2		7	1088		Solid	nese	rm	Cou		(RSI	(RSK			
Sampled by	>	DGM		-			s			nt			(175)			
Date	Time	Sample Idenitification	Matrix	Type	Preserv	TABER Chlorine								Comments / P.S.	P.S. Codes	
2/17/2016	0250	Raw Water Site #1	S	≥	N/A	MIN	×	×			Х		72	TEMP 19		
2/17/2016	Ø 52 Ø	Raw Water Site #1	GW	W I	2,7	4/V							×			
2/17/2016	Q25Q	Raw Water Site #1	GW	WI	1,7	MIM			X	-						
2/17/2046	Ø5316	Eilter Effluent (Free Chlorine) Site#2	DW	1W	1,7	5,89		+	*	*			1	EMP H	cample wi	_
2/17/2016	Ø54B	Filter Effluent (Total Chlorine) Site#3	DW	1W	N/A	4.98		×			X		71	TEMP 19, 1	Per Rull	~~
2/17/2016	Ø556	Zone #2 Site #6	DW	<u>a</u>	N/A	1,9	×								<u> </u>	<u> </u>
2/17/2016	\$53¢	Reservoir Effluent Site #5	DW	9	N/A	1.54	×					×	K	TEMD 19.5		
2/17/2016	& 53¢	Reservoir Effluent Site #5	DW	<u>a</u>	2,7	1,54							X			
Preservative	S: (1) Na ₂ S ₂ O ₃	Preservatives: (1) Na ₂ S ₂ O ₃ (2) HCl (3) HNO3 (4) NH4Cl (5) H2SO4 (6) Na ₂ S ₂ O ₃ (7) Cold (8) Other:		Matrix	Matrix: DW-Drinking Water, WW-Waste Water, SW-Storm Water, Type- 1-Routine, 2-Repeat, 3-Replacement, 4-Special	V-Drinking Water, Type- 1-Routine, 2	WW-V	WW-Waste Water, SW-Storm Water, 2-Repeat, 3-Replacement, 4-Special	<i>Nater,</i> Re <i>pla</i>	SW-S	torm t, 4-SI	Nater, pecial	GW- GI W-Well	GW- Ground Water, A-Air W-Well D- Dist.	A-Air	
Relin	Relinquished By (Sign)	Sign) Print Name / Company	ıy.		Date / Time	lime .		(Kecej	Received By (Sign)	y (Sig	(u		Print Name / Company	/Company	
Daniel Ma teik	max a	City of Lomita, CA	4	9102/21/2		12115					<i>X</i> i	,		5 WW	ACKE!	
J	NO E	Jucas / Cists		91-61-7		ol ih	<u> </u>			L	1			Magrams		
Comments:):si	1				Samples received: (© Tem	receiv	√ed: (▼ Temp		n ice		Intact) F	$\chi_{\vec{z}}$) Custody seals	seals	
Shipped Via		[] Fed X [] Golden State	e []UPS	JPS [] Client	Other							F	Page_1_ of_1		
		*														

"Your Water and Wastewater Analysis Solution"

08 March 2016 Clinical Lab No.: 16B1976

Mark Andersen Lomita, City of 24373 Walnut Avenue Lomita, CA 91717

Project Name: Standard Analysis

Sub Project: CWPF Weekly Compliance Sampling

Enclosed are the results of the analyses for samples received at the laboratory on 02/24/16 . Samples were received within temperature range, in correct containers and preservation.

Analyses were performed pursuant to client's chain of custody, within hold times, utilizing EPA or other ELAP approved methodologies.

I certify that the results are within compliance both technically and for completeness. Analytical results are attached to this letter. Please call if any additional information and or assistance are needed.

Thank you for choosing Clinical Laboratory of San Bernardino for your analytical needs.

Sincerely,

Stu Styles

Client Services Manager

tistes

Lomita, City ofProject:Standard AnalysisWork Order:16B197624373 Walnut AvenueSub Project:CWPF Weekly Compliance SamplingReceived:02/24/16 14:20Lomita CA, 91717Project Manager:Mark AndersenReported:03/08/16

Filter Effluent Site #3		16B1976-0	01 (Water)		Sample Da	te: 02/24/16	6 6:00 Sa	mpler: D	GM
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
Field Analyses									
Cl Res Free (Field)	Field	4.34		N/A	mg/L	02/24/16	02/24/16	1609392	
pH (Field)	Field	7.7		N/A	pH Units	02/24/16	02/24/16	1609393	
Temperature (Field)	Field	17		N/A	°C	02/24/16	02/24/16	1609394	
General Physical Analyses									
Apparent Color	SM 2120B	ND	3.0	15	Color Units	02/24/16	02/24/16	1609460	
<u>Metals</u>									
Iron (Fe)	EPA 200.7	ND	100	300	ug/L	02/26/16	02/26/16	1609309	
Manganese (Mn)	EPA 200.7	ND	20	50	ug/L	02/26/16	02/26/16	1609309	
Reservoir Effluent Site #5		16B1976-0	02 (Water)		Sample Da	te: 02/24/16	6 6:30 Sa	mpler: D	GM
Analyte	Method	Result	Rep. Limit	MCL	Units	Prepared	Analyzed	Batch	Qualifier
Field Analyses									
Cl Res Free (Field)	Field	1.33		N/A	mg/L	02/24/16	02/24/16	1609392	
pH (Field)	Field	7.8		N/A	pH Units	02/24/16	02/24/16	1609393	
Temperature (Field)	Field	19		N/A	°C	02/24/16	02/24/16	1609394	
General Chemical Analyses									
Total Filterable Residue/TDS	SM 2540C	650	5.0	1000	mg/L	02/25/16	02/26/16	1609357	
ND Analyte NOT DETECTED at or a	bove the reporting limit	i							

EDT Transfer Confirmation 1

Work Order: 16B1976 Report Date: 03/08/2016

Analyzing Lab: Clinical Laboratory of San Bernardino, Inc. ELAP 1088

System: 1910073 LOMITA-CITY, WATER DEPT. User ID: 4TH WELL 05 TREATMENT PLANT EFFLUENT Station No.: 1910073-006 Sampled: 160224 06:00 Units: UNITS Entry No.: 00081 Analyzed: 160224 Result: ND Entry No.: 01045 Analyzed: 160226 IRON Units: UG/L Result: ND MANGANESE Entry No.: 01055 Analyzed: 160226 Result: ND Units: UG/L

Printed: 03/08/2016 01:34:56 PM Results of 16B1976 FINAL WRITEON 1910073-006

Certificate of Analysis

Report Date: 03/04/16 11:27 Received Date: 02/25/16 12:45 Turnaround Time: 5 workdays

Phones: (909) 825-7693 **Fax:** (909) 825-7696

P.O. #:

Project: 16B1976

Attn: John Styles

Client: Clinical Laboratory of San Bernardino, Inc.

21881 Barton Road Grand Terrace, CA 92313

Dear John Styles:

Enclosed are the results of analyses for samples received 2/25/2016 with the Chain of Custody document. The samples were received in good condition, at 2.4 °C and on ice. All analysis met the method criteria except as noted below or in the report with data qualifiers.

Lab ID: 6B25067-01	Sample	ID: I	Reservoir E	Iffluent Site	#5? 16	B1976-02			Ma	ıtrix: Water
Sampled by: Client	Sampled	l: 02/24/	16 14:20							
Analyte	Result	MDL	MRL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
Methane	2.9		0.10	ma/l	10	RSK-175	3/2/16	3/2/16 20:02	W6C0209	

Certificate of Analysis

Quality Control Section

Dissolved Gases in Water by RSK-175 - Quality Control

Blank (W6C0209-BLK1)					Prepared: 03	/01/16 Ana	alyzed: 03/02	2/16 19:02	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Methane		ND		mg/l					
LCS (W6C0209-BS2)					Prepared: 03	/01/16 Ana	alyzed: 03/02	2/16 19:42	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Methane		0.210		mg/l	0.198	106	85-115		
Duplicate (W6C0209-DUP1)	s	ource: 6B2507	3-07		Prepared: 03	/01/16 Ana	alyzed: 03/02	2/16 22:40	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Methane	ND	ND		mg/l	•				

Certificate of Analysis

Notes:

The Chain of Custody document is part of the analytical report.

Any remaining sample(s) for testing will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

An Absence of Total Coliform meets the drinking water standards as established by the State of California Department of Health Services. The Reporting Limit (RL) is referenced as laboratory's Practical Quantitation Limit (PQL).

For Potable water analysis, the Reporting Limit (RL) is referenced as Detection Limit for reporting purposes (DLRs) defined by EPA.

If sample collected by Weck Laboratories, sampled in accordance to lab SOP MIS002

Authorized Signature

ELAP # 1132 LACSD # 10143 NELAC #4047-002 ORELAP

Contact: Brandon Gee (Project Manager)

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Weck Laboratories certifies that the test results meet all requirements of NELAC unless noted in the Case Narrative. This analytical report must be reproduced in its entirety.

Flags for Data Qualifiers:

ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method

Detection Limit (MDL).

Sub Subcontracted analysis, original report enclosed.

DL Method Detection Limit
RL Method Reporting Limit
MDA Minimum Detectable Activity

NR Not Reportable

6B25067 Page 3 of 3

SUBCONTRACT ORDER

Clinical Laboratory of San Bernardino 16B1976

6B25067

SENDING LABORATORY:	<u>RECEIVING LABORATORY:</u>	
Clinical Laboratory of San Bernardin 21881 Barton Road Grand Terrace, CA 92313 Phone: 909.825.7693 Fax: 909.825.7696 Project Manager: Stu Styles	Weck Lab, Analytical & Environmental Analytical & Environmental Svc 14859 E Clarl Industry, CA 91745 Phone :(626) 336-2139 Fax: (626) 336-2634	k Ave
Please email results to Project Manag [] glaubig@clinical-lab.com [] y	arra@clinical-lab.com [v] styles@clinical-lab.com [] nelson@clinical-	-lab.com
California EDT transfer those Transfer File requested; log in	mples with PS codes provided [] Yes [] No vith Element ID only [] Yes [] No	
Turn Around Time [] 10 Days Subcontract Comments:	[1] 5 Days [] Other Days	
Analysis	Comments	
Sample ID: Reservoir Effluent Site #5	6B1976-02 Sampled: 02/24/16 14:20 PS Code: Water WTX ID:	
Methane RSK175	Report in mg/l	L
Containers Supplied:		
40ml Amber Vial (B)	40ml Amber Vial (C)	

| Bay | Date / Time | Received By | Date / Time | Released By | Date / Time | Received By | Date / Time | Date / D

/ Chain of Custody

Client		City of Lomita	Sys	tem N	System Number		Analysis		Requested	sted				
Address		24373 Walnut Avenue		07	1010072									
		Lomita, CA 91717		2	2001									
Phone #		(310) 325-9830	٥	stinatie	Destination Laboratory	λuo,					otal			
Fax#		(310) 325-3627	۵	(] Clinic	[X] Clinical Laboratory	ory					Ha			
Project		Standard Analysis		₹WQCB	RWQCB Compliance	e,			C		rdne			
Sub Project	J	CWPF Weekly Compliance Sampling			No ELAP#	•	ron	ganese	olor	ater) (l	ess (as			
Comments				•	000			olids			CaC		-	
Sampled by		DGM		_	1088									
Date	Time	Sample Idenitification	Matrix	Type	Preserv	Free Chlorine					<u> </u>		Comments / P.S. Codes	
2/24/2016	acep	2/24/2016 CCCC Reservoir Effluent Site #3	DW	1W	N/A	4.34	×	×	×				PH 7.7 Temp 17C	
2/24/2016	12.14	M. 21 Reservoir Effluent Site #5	Md	WI	V/N	1 33	-	-						
Т		December 1961 and 1964 and	i i			1.33	+	<u>{ </u>		;	-		, H	
	3	MCンと Keservoir Effluent Site #5	MG DW	<u> </u>	HCL	1.33				×			PH 7.8 Temp 19.C	
								++						
Preservatives:	: (1) Na	Preservatives: (1) Na ₂ S ₂ O ₃ (2) HCl (3) HNO3 (4) NH4Cl		Matrix.	DW-Drink	Matrix: DW-Drinking Water, WW-Waste Water, SW-Storm Water,	WW-W	aste W	ater, S	W-Sto	rm Wate		GW- Ground Water, A-Air	_
(5) H2SO	14 (6) Ni	(5) H2SO4 (6) Na2SO3 (7) Cold (8) Other:			Type- 1	-Routine, 1	-Repe	1t, 3-Re	place	nent,	4-Specia	/ W-N	Type- 1-Routine, 2-Repeat, 3-Replacement, 4-Special W-Well D-Dist.	
Relingi	uished	Relinquished By (Sign) Print Name / Company			Date / Time	^r ime		R.	(cei)e) A pa	(Sign)		Print Name / Company	
Damiel Maren	×	(1914) City of Lomita		2/10/2016	016	2:45		7	1	K)		17/20m2	9 A
	1	J. Wears CLSB		M P	1/91.52	2:20	V	H	4	A			11.6007/as	2
Comments)			•	\ \ 	Samples received	eceike Î		[50]	″§ a :	Intact		() Custody seals	
Shipped Via		Fed X Golden State	l ups	110	Client []] Other						PE	Page_1_ of_1_	<u> </u>

APPENDIX B

METHANE MONITORING LOG

CITY OF LOMITA PUBLIC WORKS DEPARTMENT

CYPRESS WATER PRODUCTION FACILITY HANDHELD METHANE LOG READINGS

			FEBRUA	RY 2016	
DATE	DAY	TIME	METHANE	HANDHELD	COMMENTS
2/1/2016	М	10:00 AM	CH4- 1%	Oxy- 20.9%	
2/2/2016	Т	7:15 AM	CH4- 0%	Oxy- 20.9%	
2/3/2016	W	7:30 AM	CH4- 0%	Oxy- 20.9%	
2/4/2016	TH	7:30 AM	CH4- 1%	Oxy- 20.0%	
2/5/2016	F	8:00 AM	CH4- 0%	Oxy- 20.5%	
2/6/2016	SA				
2/7/2016	SU				
2/8/2016	М	8:00 AM	CH4- 0%	Oxy- 20.9%	
2/9/2016	Т	8:30 AM	CH4- 0%	Oxy- 20.5%	
2/10/2016	W	8:00 AM	CH4- 0%	Oxy- 20.9%	
2/11/2016	TH	9:45 AM	CH4- 2%	Oxy- 20.9%	
2/12/2016	F				LINCOLN'S BIRTHDAY HOLIDAY
2/13/2016	SA				
2/14/2016	SU				
2/15/2016	М				PRESIDENT'S DAY HOLIDAY
2/16/2016	Т	7:45 AM	CH4- 1%	Oxy- 20.1%	
2/17/2016	W	5:15 AM	CH4- 1%	Oxy- 20.9%	
2/18/2016	TH	8:00 AM	CH4- 1%	Oxy- 20.5%	
2/19/2016	F	8:00 AM	CH4- 1%	Oxy- 20.9%	
2/20/2016	SA				a
2/21/2016	SU				
2/22/2016	М	8:30 AM	CH4- 0%	Oxy- 20.5%	
2/23/2016	Т	8:00 AM	CH4- 2%	Oxy- 20.3%	
2/24/2016	W	8:00 AM	CH4- 0%	Oxy- 20.9%	
2/25/2016	TH	8:00 AM	CH4- 0%	Oxy- 20.5%	
2/26/2016	F				
2/27/2016	SA				
2/28/2016	SU				
2/29/2016	М	8:00 AM	CH4- 0%	Oxy- 21.0%	
2/29/2016	IVI	8:00 AIVI	CH4- U%	Oxy- 21.0%	

ND- Non Detect

CH4- Methane

Oxy- Oxygen

Weekend/Day Off/Holiday- Red

APPENDIX C

NITRIFICATION MONITORING DATA SUMMARY

FEBRUARY 2016 1MONTHLY NITRIFICATION MONITORING SUMMARY REPORT CITY OF LOMITA, System No. 1910073 --- Month, Year:

7.6 mg/L	1972 1974	(a)	2	dinai	LI d	r otal Chlorine	rree Chlorine	l otal Ammonia	Free Ammonia	Nitrite	Nitrate	Coliform ²	HPC	e 2 0 V	Comments
7.5 1.99	7.5 1.99	XX S	/pm	0		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	P/A	CFU/mI		
7.6 1.49	7.6 1.43	2/3/2016		رن ا	7.5		1.99	QV	QN	QV	ND	A	QN	1	We///MWD Blend
7.6 1.35	7.6 1.45	2/3/2016		\.	9.7		1.49	QV S	QV S	8	QV S	4	QV .	1	We///MWD Blend
7.7 2.5 1.25 ND	7.7 2. 1.55 ND	2/3/2016		1	0.7		1.43	QV QV	200	5 5	5 5	₹ <	S S	- 1	We///MWD Blend
7.8 2.16 ND ND ND ND A ND 2 MWD ONLY 7.8 2.19 ND ND ND ND A ND 2 MWD ONLY 7.8 2.19 ND ND ND ND A ND 3 MWD ONLY 7.5 1.38 ND ND ND ND A ND 1 WG/MWD ONLY 7.5 1.17 ND ND ND ND A ND 1 WG/MWD ONLY 7.5 1.14 ND ND ND A ND 1 WG/MWD ONLY 7.6 1.14 ND ND ND A ND 1 WG/MWD ONLY 7.6 1.126 ND ND ND A ND 1 MG/MWD ONLY 7.6 1.126 ND ND	7.8 2.16 ND ND ND ND A ND 2 MWD ONLY 7.8 2.19 ND ND ND ND A ND 2 MWD ONLY 7.8 1.6 ND ND ND ND A ND 2 MWD ONLY 7.5 1.27 ND ND ND A ND 1 MWD ONLY 7.5 1.17 ND ND ND A ND A ND 1 WWD/MND ONLY 7.7 1.17 ND ND ND A ND 1 NWD/MND ONLY 7.7 1.17 ND ND ND A ND 1 NWD/MND ONLY 7.8 2.2 0.6 ND ND ND A ND 1 NWD/MND ONLY 7.6 1.03 ND ND <t< td=""><td>2/3/2016</td><td></td><td>. m</td><td>7.7</td><td>1</td><td>1.25</td><td>N N</td><td>QV QV</td><td>8</td><td>QV QV</td><td>τ 4</td><td>2 8</td><td>- 1</td><td>We///WWD Blend</td></t<>	2/3/2016		. m	7.7	1	1.25	N N	QV QV	8	QV QV	τ 4	2 8	- 1	We///WWD Blend
7.8 2.19 ND ND ND ND A ND 3 MWD ONLY 7.8 7.6 1.38 ND ND ND A ND 1 WWD ONLY 7.5 1.27 ND ND ND ND A ND 1 WWD/MWD 7.5 1.17 ND ND ND A ND 1 WWD/MWD 7.5 1.14 ND ND ND A ND 1 WWD/MWD 7.5 1.14 ND ND ND A ND 1 WWD/MWD 7.5 1.14 ND ND ND A ND 1 NG/MWD 7.8 2.1 0.3 ND ND ND A ND 1 NG/MWD 7.6 1.126 ND ND ND A ND <td< td=""><td>7.8 2.19 ND ND ND ND A ND 3 MWD ONLY 7.8 1.6 ND ND ND ND A ND 1 WWD ONLY 7.5 1.37 ND ND ND ND A ND 1 WWD/MWD 7.5 1.17 ND ND ND ND A ND 1 WWD/MWD 7.5 1.17 ND ND ND A ND 1 WWD/MWD 7.5 1.14 ND ND ND A ND 1 WWD/MWD 7.5 1.14 ND ND ND A ND 1 WWD/MWD 7.8 2.1 0.3 ND ND ND A ND 1 ND ND ND ND ND ND ND ND ND ND</td></td<> <td>2/3/2016</td> <td></td> <td>5.</td> <td>7.8</td> <td>2.16</td> <td></td> <td>ND</td> <td>ND</td> <td>QN</td> <td>ND</td> <td>A</td> <td>ND</td> <td></td> <td>MWD Only</td>	7.8 2.19 ND ND ND ND A ND 3 MWD ONLY 7.8 1.6 ND ND ND ND A ND 1 WWD ONLY 7.5 1.37 ND ND ND ND A ND 1 WWD/MWD 7.5 1.17 ND ND ND ND A ND 1 WWD/MWD 7.5 1.17 ND ND ND A ND 1 WWD/MWD 7.5 1.14 ND ND ND A ND 1 WWD/MWD 7.5 1.14 ND ND ND A ND 1 WWD/MWD 7.8 2.1 0.3 ND ND ND A ND 1 ND	2/3/2016		5.	7.8	2.16		ND	ND	QN	ND	A	ND		MWD Only
7.5 1.6 - ND ND ND ND ND ND A ND 1 A ND 2 MWD ONLY 7.5 - 1.27 ND ND ND ND A ND 1 We//MWD 7.5 - 1.17 ND ND ND ND A ND 1 We//MWD 7.5 - 1.1 ND ND ND ND A ND 1 We//MWD 7.5 - 1.1 ND ND ND ND A ND 1 We//MWD 7.7 1.7 0.1 ND ND ND A ND 1 We//MWD 7.8 2.1 0.3 ND ND ND ND A ND 1 We//WD 7.6 - 1.26 ND ND ND ND A ND 1 We//WD	7.5 1.6 - ND ND ND A ND 2 MWD ONLY 7.5 - 1.38 ND ND ND A ND 1 Wei/MWD 7.5 - 1.27 ND ND ND ND A ND 1 Wei/MWD 7.5 - 0.33 ND ND ND A ND 1 Wei/MWD 7.5 - 0.41 ND ND ND A ND 1 Wei/MWD 7.5 - 0.43 ND ND ND A ND 1 Wei/MWD 7.8 2.2 0.6 ND ND ND A ND 1 Wei/MWD 7.8 2.2 0.6 ND ND ND A ND 1 Wei/MWD 7.6 - 1.33 ND ND ND A ND 1 Wei/MWD <t< td=""><td>2/3/2016</td><td>19</td><td>1.</td><td>7.8</td><td>2.19</td><td></td><td>ND</td><td>ON</td><td>ND</td><td>ND</td><td>4</td><td>QN</td><td>1 m</td><td>MWD Only</td></t<>	2/3/2016	19	1.	7.8	2.19		ND	ON	ND	ND	4	QN	1 m	MWD Only
7.5 - 1.38 ND ND ND ND A ND 1 Well/MWD 7.5 - 1.27 ND ND ND A ND 1 Well/MWD 7.5 - 1.1 ND ND ND A ND 1 Well/MWD 7.5 - 1.7 ND ND ND ND A ND 1 Well/MWD 7.5 - 1.7 ND ND ND A ND 1 Well/MWD 7.6 - 1.7 ND ND ND A ND 1 Well/MWD 7.6 - 1.26 ND ND ND A ND 1 Well/MWD 7.6 - 1.54 ND ND ND A ND 1 Well/MWD 7.6 - 1.53 ND ND ND ND A ND 1	7.5 - 1.38 ND ND ND ND A ND 1 Wei/MAND 7.5 - 1.27 ND ND ND ND A ND 1 Wei/MAND 7.5 - 1.1 ND ND ND ND A ND 1 Wei/MAND 7.5 - 1.7 0.1 ND ND ND A ND 1 Wei/MAND 7.5 - 1.7 0.1 ND ND ND A ND 1 Wei/MAND 7.8 2.1 0.5 ND ND ND ND A ND 2 MWD ONJ 7.6 - 1.126 ND ND ND ND A ND 1 Wei/MAND 7.6 - 1.13 ND ND ND ND A ND 1 Wei/MAND 7.6 - 1.13 N	2/3/2016	19	.3	7.8	1.6		QN	QN	ND	ND	Ą	ND	2	MWD Only
7.5 - 1.27 ND ND ND A ND 1 Well/MWD 7.5 - 1.1 ND ND ND A ND 1 Well/MWD 7.5 - 1.1 ND ND ND A ND 1 Well/MWD 7.5 - 1.7 0.1 ND ND ND A ND 1 Well/MWD 7.7 - 1.7 0.1 ND ND ND A ND 1 Well/MWD 7.8 2.1 0.3 ND ND ND A ND 3 MWD Only 7.6 - 1.26 ND ND ND A ND 1 Well/MWD 7.6 - 1.33 ND ND ND A ND 1 Well/MWD 7.6 - 1.33 ND ND ND ND A ND 1 </td <td>7.5 - 1.27 ND ND ND A ND 1 N 1 Well/MWD 1 Well/WWD 1 Well/WWD 1 Well/WWD 1 1 Well/WWD 1 1 1</td> <td>2/10/2016</td> <td></td> <td>9:</td> <td>7.5</td> <td>•</td> <td>1.38</td> <td>ND</td> <td>QN</td> <td>QN</td> <td>QN</td> <td>A</td> <td>QN</td> <td>1</td> <td>We///WWD Blend</td>	7.5 - 1.27 ND ND ND A ND 1 N 1 Well/MWD 1 Well/WWD 1 Well/WWD 1 Well/WWD 1 1 Well/WWD 1 1 1	2/10/2016		9:	7.5	•	1.38	ND	QN	QN	QN	A	QN	1	We///WWD Blend
7.5 - 1.1 ND ND ND ND A ND 1 We///MWD 7.5 - 0.833 ND ND ND ND A ND 1 We///MWD 7.7 1.7 0.1 ND ND ND A ND 1 We///MWD 7.8 2.1 0.3 ND ND ND A ND 1 We///WWD 7.8 2.2 0.6 ND ND ND A ND 3 MWD Only 7.6 - 1.26 ND ND ND A ND 1 We///WWD 7.6 - 1.33 ND ND ND A ND 1 We///WWD 7.6 - 1.54 ND ND ND A ND 1 We///WWD 7.6 - 1.54 ND ND ND A ND 1	7.5 - 1.1 ND ND ND A ND 1 Wei/MAWD 7.5 - 0.93 ND ND ND A ND 1 Wei/MAWD 7.5 - 0.93 ND ND ND ND A ND 1 Wei/MAWD 7.7 1.7 0.1 ND ND ND A ND 1 Wei/MAWD 7.8 2.1 0.3 ND ND ND A ND 3 MWD Only 7.6 - 1.77 ND ND ND A ND 1 Wei/MAWD 7.6 - 1.73 ND ND ND A ND 1 Wei/MAWD 7.6 - 1.33 ND ND ND A ND 1 Wei/MAWD 7.6 - 1.33 ND ND ND A ND 1 Wei/MAWD <td>2/10/2016</td> <td>19</td> <td>ε.</td> <td>7.5</td> <td></td> <td>1.27</td> <td>ND</td> <td>QN</td> <td>ND</td> <td>ND</td> <td>A</td> <td>QN</td> <td>1</td> <td>We///WWD Blend</td>	2/10/2016	19	ε.	7.5		1.27	ND	QN	ND	ND	A	QN	1	We///WWD Blend
7.5 0.93 ND ND ND ND A ND 1 We//MWD 7.5 1.1 ND ND ND ND A ND 1 We//MWD 7.7 1.7 0.3 ND ND ND A ND 1 We//MWD 7.8 2.1 0.3 ND ND ND A ND 3 MWD Only 7.6 - 1.26 ND ND ND A ND 1 We//MWD Only 7.6 - 1.26 ND ND ND A ND 1 We///WWD 7.6 - 1.03 ND ND ND A ND 1 We///WWD 7.6 - 1.54 ND ND ND A ND 1 We///WWD 7.7 2.2 2.11 ND ND ND A ND A <	7.5 - 0.93 ND ND ND ND A ND 1 Wel/MMVD 7.5 1.7 0.1 ND ND ND ND A ND 1 Wel/MMVD 7.8 2.1 0.3 ND ND ND ND A ND 1 Wel/MMVD 7.8 2.2 0.6 ND ND ND A ND 3 MWD Only 7.6 - 1.72 ND ND ND A ND 1 Wel/MWD 7.6 - 1.73 ND ND ND A ND 1 Wel/MWD 7.6 - 1.33 ND ND ND A ND 1 Wel/MWD 7.6 - 1.03 ND ND ND A ND 1 Wel/MWD 7.6 - 1.03 ND ND ND A ND <td>2/10/2016</td> <td>19</td> <td>.1</td> <td>7.5</td> <td>3</td> <td>1.1</td> <td>QN</td> <td>ND</td> <td>QV</td> <td>ND</td> <td>A</td> <td>ND</td> <td>1</td> <td>We///MWD Blend</td>	2/10/2016	19	.1	7.5	3	1.1	QN	ND	QV	ND	A	ND	1	We///MWD Blend
7.5 - 1.1 ND ND ND ND A ND 1 We///MWD 7.7 1.7 0.1 ND ND ND A ND 1 We////////////////////////////////////	7.5 - 1.1 ND ND ND ND A ND 1 Wel/MAND Conty 7.8 2.2 0.1 ND ND ND A ND 2 MND Conty 7.8 2.2 0.6 ND ND ND ND A ND 3 MWD Conty 7.6 - 1.27 ND ND ND ND A ND 1 Wel/MAND 7.6 - 1.33 ND ND ND ND A ND 1 Wel/MAND 7.6 - 1.54 ND ND ND A ND 1 Wel/MAND 7.7 2.2 2.11 ND ND ND A ND 1 Wel/MAND 7.8 2.2 2.14 ND ND ND ND A ND 1 Wel/MAND 7.8 2.2 2.14 ND ND ND <td>2/10/2016</td> <td>19</td> <td>8.</td> <td>7.5</td> <td>1</td> <td>0.93</td> <td>ND</td> <td>ND</td> <td>QN</td> <td>QN</td> <td>A</td> <td>ND</td> <td>1</td> <td>We///MWD Blend</td>	2/10/2016	19	8.	7.5	1	0.93	ND	ND	QN	QN	A	ND	1	We///MWD Blend
7.7 1.7 0.1 ND ND ND A ND 2 MWD Only 7.8 2.1 0.3 ND ND ND A ND 3 MWD Only 7.8 2.2 0.6 ND ND ND A ND 3 MWD Only 7.6 - 1.26 ND ND ND A ND 1 We///MWD 7.6 - 1.73 ND ND ND A ND 1 We////WD 7.6 - 1.73 ND ND ND A ND 1 We////////////////////////////////////	7.7 1.7 0.1 ND ND ND ND A ND 2 MWD ONLY 7.8 2.1 0.3 ND ND ND ND A ND 3 MWD ONLY 7.6 - 1.26 ND ND ND ND A ND 1 Wel/MWD ONLY 7.6 - 1.33 ND ND ND ND A ND 1 Wel/MWD ONLY 7.6 - 1.33 ND ND ND A ND 1 Wel/MWD ONLY 7.6 - 1.54 ND ND ND A ND 1 Wel/MWD ONLY 7.6 - 1.54 ND ND ND A ND 1 Wel/MWD ONLY 7.8 2.2 2.11 ND ND ND A ND A ND A ND A ND A ND A ND	2/10/2016	19.	1.	7.5	ı	1.1	ND	ND	QN	ND	A	QN	1	We///MWD Blend
7.8 2.1 0.3 ND ND ND A ND 3 MWD Only 7.8 2.2 0.6 ND ND ND A ND 2 MWD Only 7.6 - 1.26 ND ND ND A ND 1 Well/MWD 7.6 - 1.37 ND ND ND A ND 1 Well/MWD 7.6 - 1.54 ND ND ND A ND 1 Well/MWD 7.7 2.2 2.11 ND ND ND A ND 1 Well/MWD 7.8 2.2 2.11 ND ND ND A ND 1 Well/MWD 7.8 2.2 2.18 ND ND ND A ND 3 MWD Only 7.8 2.3 1.11 ND ND A ND A ND 1 Well/WWD	7.8 2.1 0.3 ND ND ND ND A ND A ND 3 MWD Only 7.8 2.2 0.6 ND ND ND ND A ND 2 MWD Only 7.6 - 1.17 ND ND ND ND A ND 1 Well/MWD 7.6 - 1.17 ND ND ND ND A ND 1 Well/MWD 7.6 - 1.03 ND ND ND ND A ND 1 Well/MWD 7.6 - 1.03 ND ND ND A ND 1 Well/MWD 7.7 2.2 2.14 ND ND ND ND A ND 1 Well/MWD 7.8 2.3 2.18 ND ND ND ND A ND 1 Well/WMD 7.6 - <t< td=""><td>2/10/2016</td><td>19.</td><td>.5</td><td>7.7</td><td>1.7</td><td>0.1</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>A</td><td>ND</td><td>2</td><td>MWD Only</td></t<>	2/10/2016	19.	.5	7.7	1.7	0.1	ND	ND	ND	ND	A	ND	2	MWD Only
7.8 2.2 0.6 ND ND ND ND A ND 2 MWD ONLY 7.6 - 1.26 ND ND ND A ND 1 Wel/IMWD 7.6 - 1.33 ND ND ND A ND 1 Wel/IMWD 7.6 - 1.54 ND ND ND A ND 1 Wel/IMWD 7.7 2.2 2.11 ND ND ND A ND 1 Wel/IMWD 7.7 2.2 2.11 ND ND ND A ND 1 Wel/IMWD 7.8 2.2 2.11 ND ND ND A ND 1 Wel/IMWD 7.8 2.2 2.14 ND ND ND A ND 3 MWD OND 7.8 2.2 2.18 ND ND ND A ND 3 MWD OND	7.8 2.2 0.6 ND ND ND ND ND A ND 2 MWD ONJY 7.6 1.26 ND ND ND ND A ND 1 Wei/MWD 7.6 1.54 ND ND ND ND A ND 1 Wei/MWD 7.6 1.54 ND ND ND ND A ND 1 Wei/MWD 7.7 2.2 2.11 ND ND ND ND A ND 2 MWD ONJY 7.8 2.2 2.11 ND ND ND ND A ND 3 MWD ONJY 7.8 2.2 2.11 ND ND ND ND A ND 3 MWD ONJY 7.8 2.2 2.11 ND ND ND ND A ND 3 MWD ONJY 7.8 2.3 2.18 ND ND ND ND A ND 1 Wei/MWD 7.7 1.08 ND ND ND ND A ND 1 Wei/MWD 7.7 1.08 ND ND ND ND A ND 1 Wei/MWD 7.7 1.33 ND ND ND ND A ND 1 Wei/MWD 7.8 1.98 ND ND ND ND ND A ND 1 Wei/MWD 7.8 1.98 ND ND ND ND ND A ND 1 Wei/MWD 7.8 1.98 ND ND ND ND ND A ND 3 MWD ONJY 7.8 1.90 ND ND ND ND ND A ND 2 MWD ONJY 7.9 7.9 7.9 7.9 ND ND ND ND ND ND ND N	2/10/2016	15	9:	7.8	2.1	0.3	QN	ND	ND	QN	A	ND	က	MWD Only
7.6 - 1.26 ND ND ND A ND 1 Wel/MWD 7.6 - 1.17 ND ND ND A ND 1 Wel/MWD 7.6 - 1.03 ND ND ND A ND 1 Wel/MWD 7.6 - 1.54 ND ND ND A ND 1 Wel/MWD 7.7 2.2 2.11 ND ND ND A ND 1 Wel/MWD 7.8 2.2 2.11 ND ND ND A ND 3 MWD Only 7.8 2.2 2.11 ND ND ND A ND 3 MWD Only 7.8 2.2 2.18 ND ND ND A ND 3 MWD Only 7.8 2.3 2.18 ND ND ND A ND 1 Wel/MWD	7.6 - 1.26 ND ND ND ND A ND 1 We///MWD 7.6 - 1.17 ND ND ND ND A ND 1 We///MWD 7.6 - 1.33 ND ND ND ND A ND 1 We///MWD 7.6 - 1.54 ND ND ND ND A ND 1 We///MWD 7.7 2.2 2.11 ND ND ND ND A ND 1 We////WD 7.8 2.2 2.11 ND ND ND A ND 3 MWD Only 7.8 2.3 2.18 ND ND ND ND A ND 3 MWD Only 7.8 2.3 2.18 ND ND ND ND A ND 1 We////////////////////////////////////	2/10/2016	15	.2	7.8	2.2	9.0	ND	ND	ND	ND	A	ON	2	MWD Only
7.6 - 1.17 ND ND ND A ND 1 NS ND ND A ND 1 NS ND ND ND A ND 1 NS ND ND ND A ND 1 NS	7.6 - 1.17 ND ND ND A ND 1 NEMIMAD 7.6 - 1.33 ND ND ND A ND 1 Wel/MWD 7.6 - 1.54 ND ND ND A ND 1 Wel/MWD 7.7 2.2 2.11 ND ND ND A ND 1 Wel/MWD 7.7 2.2 2.11 ND ND ND A ND 1 Wel/MWD 7.8 2.2 2.11 ND ND ND A ND 1 Wel/MWD 7.8 2.3 2.18 ND ND ND A ND 3 MWD Only 7.8 2.3 2.18 ND ND ND A ND 2 MWD Only 7.6 - 1.11 ND ND ND A ND 1 Wel/MWD	2/17/2016	19	65	7.6		1.26	QN	QN	QN	QN	A	CN	1	We///WWD Blend
7.6 - 1.33 ND ND ND A ND 1 We///MWD 7.6 - 1.03 ND ND ND A ND 1 We///MWD 7.6 - 1.54 ND ND ND A ND 1 We///MWD 7.7 2.2 2.11 ND ND ND A ND A ND 1 We////////////////////////////////////	7.6 - 1.33 ND ND ND A ND 1 We//MWD 7.6 - 1.03 ND ND ND A ND 1 We//MWD 7.6 - 1.54 ND ND ND A ND 1 We//MWD 7.7 2.2 2.11 ND ND ND A ND 1 We//MWD 7.8 2.2 2.11 ND ND ND A ND A ND 3 MWD Only 7.8 2.2 2.11 ND ND ND A ND 2 MWD Only 7.8 2.3 2.18 ND ND ND A ND 2 MWD Only 7.6 - 1.14 ND ND ND A ND 1 We//MWD 7.7 - 1.08 ND ND ND A ND 1 W	2/17/2016	19	7.	9.7	ī	1.17	ND	ND	ND	ND	A	QN	1	We///WWD Blend
7.6 - 1.03 ND ND ND A ND 1 We///MWD 7.6 - 1.54 ND ND ND A ND 1 We///MWD 7.7 2.2 2.11 ND ND ND A ND 2 MWD Only 7.8 2.2 2.11 ND ND ND A ND 3 MWD Only 7.8 2.3 2.18 ND ND ND A ND 3 MWD Only 7.8 2.3 2.18 ND ND ND A ND 3 MWD Only 7.8 2.3 2.18 ND ND ND A ND 3 MWD Only 7.6 - 1.15 ND ND ND A ND 1 Me///MWD 7.7 - 1.08 ND ND A ND 1 Me////MWD 7.6 <td>7.6 - 1.03 ND ND ND A ND 1 We//MWD 7.6 - 1.54 ND ND ND A ND 1 We//MWD 7.7 2.2 2.11 ND ND ND A ND 1 We//MWD 7.8 2.2 2.11 ND ND ND A ND 3 MWD Only 7.8 2.2 2.14 ND ND ND A ND 3 MWD Only 7.8 2.3 2.18 ND ND ND A ND 3 MWD Only 7.6 - 1.15 ND ND ND A ND 1 We//MWD 7.7 - 1.08 ND ND ND A ND 1 We//MWD 7.7 - 1.08 ND ND ND A ND 1 We///MWD</td> <td>2/17/2016</td> <td>19</td> <td>.7</td> <td>9.2</td> <td>1</td> <td>1.33</td> <td>ND</td> <td>ND</td> <td>QN</td> <td>ND</td> <td>A</td> <td>ND</td> <td>1</td> <td>We///MWD Blend</td>	7.6 - 1.03 ND ND ND A ND 1 We//MWD 7.6 - 1.54 ND ND ND A ND 1 We//MWD 7.7 2.2 2.11 ND ND ND A ND 1 We//MWD 7.8 2.2 2.11 ND ND ND A ND 3 MWD Only 7.8 2.2 2.14 ND ND ND A ND 3 MWD Only 7.8 2.3 2.18 ND ND ND A ND 3 MWD Only 7.6 - 1.15 ND ND ND A ND 1 We//MWD 7.7 - 1.08 ND ND ND A ND 1 We//MWD 7.7 - 1.08 ND ND ND A ND 1 We///MWD	2/17/2016	19	.7	9.2	1	1.33	ND	ND	QN	ND	A	ND	1	We///MWD Blend
7.6 - 1.54 ND ND ND A ND 1 We//MAWD 7.7 2.2 2.11 ND ND ND A ND 2 MWD Only 7.8 2.2 2.11 ND ND ND A ND 3 MWD Only 7.8 2.3 2.18 ND ND ND A ND 3 MWD Only 7.6 - 1.15 ND ND ND A ND 1 Ne//MWD 7.7 - 1.11 ND ND ND A ND 1 Ne///MWD 7.7 - 1.08 ND ND ND A ND 1 Ne////MWD 7.6 - 1.33 ND ND ND A ND 1 Ne////////> NE/////>ND A ND 1 Ne///////> Ne////////>ND 7.8 1.96 - 1.33 ND <td< td=""><td>7.6 - 1.54 ND ND ND A ND 1 We//MAWD 7.7 2.2 2.11 ND ND ND A ND 2 MWD Only 7.8 2.2 2.11 ND ND ND A ND 3 MWD Only 7.8 2.2 2.11 ND ND ND A ND 3 MWD Only 7.6 - 1.15 ND ND ND A ND 1 We//MWD 7.7 - 1.11 ND ND ND A ND 1 We//MWD 7.7 - 1.08 ND ND ND A ND 1 We//MWD 7.6 - 1.33 ND ND ND A ND 1 We//MWD 7.8 1.98 - ND ND ND A ND 1 We//MWD <</td><td>2/17/2016</td><td>20</td><td>0:</td><td>9.7</td><td></td><td>1.03</td><td>QN</td><td>ND</td><td>ND</td><td>ND</td><td>A</td><td>ND</td><td>1</td><td>We///MWD Blend</td></td<>	7.6 - 1.54 ND ND ND A ND 1 We//MAWD 7.7 2.2 2.11 ND ND ND A ND 2 MWD Only 7.8 2.2 2.11 ND ND ND A ND 3 MWD Only 7.8 2.2 2.11 ND ND ND A ND 3 MWD Only 7.6 - 1.15 ND ND ND A ND 1 We//MWD 7.7 - 1.11 ND ND ND A ND 1 We//MWD 7.7 - 1.08 ND ND ND A ND 1 We//MWD 7.6 - 1.33 ND ND ND A ND 1 We//MWD 7.8 1.98 - ND ND ND A ND 1 We//MWD <	2/17/2016	20	0:	9.7		1.03	QN	ND	ND	ND	A	ND	1	We///MWD Blend
7.7 2.2 2.11 ND ND ND A ND 2 MWD Only 7.8 2.2 2.11 ND ND ND A ND 3 MWD Only 7.8 2.3 2.18 ND ND ND A ND 3 MWD Only 7.6 - 1.15 ND ND ND A ND 1 Wei/MWD 7.7 - 1.08 ND ND ND A ND 1 Wei/MWD 7.7 - 0.83 ND ND ND A ND 1 Wei/MWD 7.6 - 1.33 ND ND ND A ND 1 Wei/MWD 7.8 1.96 - ND ND A ND 1 Wei/MWD 7.8 1.96 - ND ND A ND 1 Wei/MWD 7.8 1.96	7.7 2.2 2.11 ND ND ND A ND 2 MWD Only 7.8 2.2 2.11 ND ND ND A ND 3 MWD Only 7.8 2.3 2.18 ND ND ND A ND 2 MWD Only 7.6 - 1.15 ND ND ND A ND 1 We//MWD 7.7 - 1.08 ND ND ND A ND 1 We//MWD 7.6 - 1.33 ND ND ND A ND 1 We//MWD 7.8 1.98 - 1.33 ND ND ND A ND 1 We//MWD 7.8 1.90 - 1.33 ND ND ND A ND 1 We//MWD 7.8 1.90 - 1.90 - ND 0.79 A ND	2/17/2016	19	4.	9.7	ī	1.54	ND	ND	ND	ND	A	QN	1	
7.8 2.2 2.11 ND ND ND A ND 3 MWD Only 7.8 2.3 2.18 ND ND ND A ND 2 MWD Only 7.6 - 1.15 ND ND ND A ND 1 Wei/MWD 7.7 - 1.08 ND ND ND A ND 1 Wei/MWD 7.7 - 0.83 ND ND ND A ND 1 Wei/MWD 7.6 - 1.33 ND ND ND A ND 1 Wei/MWD 7.8 1.96 - ND ND ND A ND 1 Wei/MWD 7.8 1.90 - ND ND ND A ND 1 Wei/MWD 7.8 1.90 - ND ND A ND 2 MND Only	7.8 2.2 2.11 ND ND ND A ND 3 MWD Only 7.8 2.3 2.18 ND ND ND A ND 2 MWD Only 7.6 - 1.15 ND ND ND A ND 1 We//MWD 7.7 - 1.08 ND ND ND A ND 1 We//MWD 7.6 - 1.33 ND ND ND A ND 1 We//MWD 7.8 1.98 - ND ND ND A ND 1 We//MWD 7.8 1.99 - ND ND ND 0.79 A ND 1 We//MWD 7.6 1.90 - ND ND ND 0.79 A ND 2 MWD Only 7.6 1.90 - ND ND 0.79 A ND 3 <t< td=""><td>2/17/2016</td><td>15</td><td>ε.</td><td>7.7</td><td>2.2</td><td>2.11</td><td>QN</td><td>ND</td><td>ND</td><td>ND</td><td>Ą</td><td>ND</td><td>2</td><td>MWD Only</td></t<>	2/17/2016	15	ε.	7.7	2.2	2.11	QN	ND	ND	ND	Ą	ND	2	MWD Only
7.8 2.3 2.18 ND ND ND ND A ND 2 AWD ONLY 7.6 - 1.15 ND ND ND A ND 1 We//MWD 7.7 - 1.08 ND ND ND A ND 1 We//MWD 7.7 - 0.83 ND ND ND A ND 1 We///MWD 7.6 - 1.33 ND ND ND A ND 1 We///MWD 7.8 1.98 - ND ND ND A ND 1 We////WWD 7.8 1.90 - ND ND ND A ND 1 We////////////////////////////////////	7.8 2.3 2.18 ND ND ND ND A ND 2 MWD Only 7.6 - 1.15 ND ND ND A ND 1 We//MWD 7.7 - 1.08 ND ND ND A ND 1 We//MWD 7.7 - 0.83 ND ND ND A ND 1 We//MWD 7.6 - 1.33 ND ND ND A ND 1 We//MWD 7.8 1.98 - ND ND ND A ND 1 We//MWD 7.8 1.90 - ND ND ND 0.79 A ND 3 MWD Only 7.6 1.90 - ND ND ND 0.79 A ND 3 MWD Only 7.6 1.90 - ND ND 0.79 A ND <td< td=""><td>2/17/2016</td><td>14</td><td>80</td><td>7.8</td><td>2.2</td><td>2.11</td><td>ND</td><td>ND</td><td>ND</td><td>ND</td><td>Ą</td><td>ND</td><td>3</td><td>MWD Only</td></td<>	2/17/2016	14	80	7.8	2.2	2.11	ND	ND	ND	ND	Ą	ND	3	MWD Only
7.6 - 1.15 ND ND ND A ND 1 We//MWD 7.7 - 1.11 ND ND ND A ND 1 We//MWD 7.7 - 1.08 ND ND ND A ND 1 We//MWD 7.7 - 0.83 ND ND ND A ND 1 We//MWD 7.6 - 1.33 ND ND ND A ND 1 We//MWD 7.8 1.98 - ND ND ND A ND 2 MWD Only 7.8 1.90 - ND ND ND A ND 3 MWD Only	7.6 - 1.15 ND ND ND A ND 1 Wei/IMWD 7.7 - 1.11 ND ND ND A ND 1 Wei/IMWD 7.7 - 1.08 ND ND ND A ND 1 Wei/IMWD 7.7 - 0.83 ND ND ND ND A ND 1 Wei/IMWD 7.6 - 1.38 ND ND ND ND A ND 1 Wei/IMWD 7.8 1.96 - ND ND ND A ND 1 WD ND ND <t< td=""><td>2/17/2016</td><td>15</td><td>e.</td><td>7.8</td><td>2.3</td><td>2.18</td><td>QV</td><td>ND</td><td>ND</td><td>ND</td><td>A</td><td>ND</td><td>2</td><td>MWD Only</td></t<>	2/17/2016	15	e.	7.8	2.3	2.18	QV	ND	ND	ND	A	ND	2	MWD Only
7.7 1.11 ND ND ND ND A ND 1 We///MWD ND A ND 1 We////MWD ND ND A ND 1 We/////WD ND ND A ND 1 We/////////ND ND ND ND A ND 1 We//////////ND ND ND ND A ND 1 We//////////////ND ND ND ND ND A ND 1 We/////////////////ND 7.8 1.96 ND ND ND ND ND A ND 3 MWD Only ND ND ND ND ND ND ND N	7.7 1.11 ND ND ND A ND 1 We///MWD 1 We///MWD 1 We///MWD 1 We///MWD 1 We///MWD 1 We////MWD 1.33 ND ND ND ND A ND 1 We////MWD 1.98 ND ND ND ND 0.79 A ND 2 MWD Only 1.86 1.90 ND ND ND 0.79 A ND 3 MWD Only 1.92 ND ND ND ND 0.78 A ND 2 MWD Only 1.92 ND ND ND ND 0.78 A ND 2 MWD Only 1.92 MWD Only 1.9	2/24/2016	18	8.	9.7	ı	1.15	ND	ND	ND	ND	A	ND	1	We///MWD Blend
7.7 - 1.08 ND ND ND ND A ND 1 We///MWD 7.7 - 0.83 ND ND ND A ND 1 We///MWD 7.6 - 1.33 ND ND ND A ND 1 We///MWD 7.8 1.96 - ND ND ND 0.79 A ND 2 MWD Only 7.8 1.90 - ND ND ND 0.79 A ND 3 MWD Only	7.7 1.08 ND ND ND A ND 1 We///MWD 1 We///MWD 1 We///MWD 1 We///MWD 1 We///MWD 1 We///MWD 1.98 ND ND ND 0.79 A ND 2 MWD Only 1.92 ND ND ND 0.79 A ND 3 MWD Only 1.92 ND ND ND 0.78 A ND 2 MWD Only 1.92 ND ND ND 0.78 A ND 2 MWD Only 1.92 ND ND ND ND 0.78 A ND 2 MWD Only 1.92 MWD Only	2/24/2016	1;	6	7.7	1	1.11	QN	ON	ND	ND	A	ND	1	We///MWD Blend
7.7 - 0.83 ND ND ND ND A ND 1 Wei/MAWD 7.6 - 1.33 ND ND ND A ND 1 Wei/MAWD 7.8 1.98 - ND ND 0.79 A ND 2 MWD Only 7.8 1.90 - ND ND ND 3 MWD Only	7.7 - 0.83 ND ND ND ND A ND 1 Wei/MWD ND ND 0.79 A ND 2 WWD Only 1 1 1 1 1 1 1 1 1	2/24/2016	19	e.	7.7	1	1.08	ON	ON	ON	ND	A	ND	1	We///MWD Blend
7.6 - 1.33 ND ND ND ND A ND 1 Wel/MWD 7.8 1.98 - ND ND 0.79 A ND 2 MWD Only 7.8 1.90 - ND ND ND 0.79 A ND 3 MWD Only	7.6 - 1.33 ND ND ND ND A ND 1 Wel/MWD 7.8 1.98 - ND ND ND 0.79 A ND 2 MWD Only 7.8 1.90 - ND ND 0.79 A ND 3 MWD Only 7.6 1.92 - ND ND 0.78 A ND 2 MWD Only	2/24/2016	1	6	7.7	ī	0.83	ND	ND	ND	ND	A	ND	1	We///MWD Blend
7.8 1.98 - ND ND ND 0.79 A ND 2 7.8 1.90 - ND ND 0.79 A ND 3	7.8 1.98 - ND ND ND 0.79 A ND 2 7.8 1.90 - ND ND ND 0.79 A ND 3 7.6 1.92 - ND ND ND 0.78 A ND 2	2/24/2016	19	1.1	9.2		1.33	QN	ND	ND	ND	A	ND	1	
7.8 1.90 - ND ND 0.79 A ND 3	7.8 1.90 - ND ND ND 0.79 A ND 3 7.6 1.92 - ND ND ND ND 0.78 A ND 2	2/24/2016	1	6	7.8	1.98	i	QN	QN	ND	0.79	A	ND	2	MWD Only
	7.6 1.92 - ND ND ND 0.78 A ND 2	2/24/2016	19	5.	7.8	1.90	ï	QN	ND	ND	0.79	A	ND	3	MWD Only
1 Wei/IMWD Blend														1	We///MWD Blend
1 We///AWD Blend 1 We///AWD Blend	1 Wei/IMWD Blend													1	We///MWD Blend
1 We///MWD Blend 1 We///WWD 1 We///WWD We///WWD We///WD We///WD We///WD We///WD We///WD We///WD We///WD	1 Wei/IMWD Blend													1	We///MWD Blend
++++														1	We///MWD Blend
+++++														2	MWD Only
+++++			+	+										က	MWD Only
			_	_	_									0	MWD Only

'Notes: Report Due to DDW by the 10th of the following month. This Report can be used for the routine weekly monitoring (one Report per month) as well as for daily monitoring when there is actual and potential for nitrification (about four or five Reports per month, in this case).

*Coliform results are part of weekly Bacti sampling results.